• Title/Summary/Keyword: seismic wave

Search Result 773, Processing Time 0.037 seconds

MiSA (Method of Integrated Spectral Analysis) to Evaluate Structural Integrity of Tunnel Concrete Lining (터널 콘크리트 라이닝의 구조적 특성평가를 위한 탄성파 기법, MiSA의 개발)

  • 김기봉;추진호;조성호;조미라
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.49-56
    • /
    • 2001
  • The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.

  • PDF

Comparison of Tunnel's Deformation by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 의한 터널의 변형 비교)

  • Kwak, Dong-Yeop;Ahn, Jae-Kwang;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.265-268
    • /
    • 2008
  • The safety of a tunnel under seismic motion is most often evaluated by ovalling deformation of tunnel. This paper research about tunnel's longitudinal deformation. Because of spatial variation of seismic ground motion, the longitudinal structures like tunnel are likely to experience relative displacements along longitudinal direction. The spatially variable ground motion can be estimated by coherency function obtained empirically, and can be considered from different arrival times of ground motion. As a result of estimating tunnel's relative displacements at maximum curvature of tunnel, the displacements and curvatures estimated by coherency function affect the tunnel's safety more than different arrival times. However, if tunnel's displacements by coherency function superpose on displacements by different arrival times, the relative displacements and curvatures of tunnel will be more severe. Therefore, to estimate accurately tunnel's deformation in longitudinal direction has to consider both coherency and wave passage effects.

  • PDF

Study of seismic traveltime and amplitude effect to detect to detect cracks in rock (암석시편의 균열조사를 위한 탄성파 주시 및 진폭 변화에 관한 연구)

  • 서백수;백환조;민경원
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.239-244
    • /
    • 1996
  • Cracks have influence on the physical and mechanical and, more importantly, on the engineering properties of the rock. Physical properties including the volumetric deformation coefficient, electrical resistivity, seismic wave velocity, and the mechanical properties such as the elastic constants and strength of rock are affected significantly by the presence of cracks of various sizes. An experimental program was undertaken to investigate the effect of a finite line crack on the diffraction of the plane compressional wave. Horizontal and vertical components of displacement and acceleration curve were obtained using a single-source and multi-receivers system. A theoretical model from numerical analysis implementing the finite element method was compared with the measured data.

  • PDF

An analytical model for displacement response spectrum considering the soil-resonance effect

  • Zhang, Haizhong;Zhao, Yan-Gang
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.373-386
    • /
    • 2022
  • The development of performance-based design methodologies requires a reasonable definition of a displacement-response spectrum. Although ground motions are known to be significantly affected by the resonant-like amplification behavior caused by multiple wave reflections within the surface soil, such a soil-resonance effect is seldom explicitly considered in current-displacement spectral models. In this study, an analytical approach is developed for the construction of displacement-response spectra by considering the soil-resonance effect. For this purpose, a simple and rational equation is proposed for the response spectral ratio at the site fundamental period (SRTg) to represent the soil-resonance effect based on wave multiple reflection theory. In addition, a bilinear model is adopted to construct the soil displacement-response spectra. The proposed model is verified by comparing its results with those obtained from actual observations and SHAKE analyses. The results show that the proposed model can lead to very good estimations of SRTg for harmonic incident seismic waves and lead to reasonable estimations of SRTg and soil displacement-response spectra for earthquakes with a relatively large magnitude, which are generally considered for seismic design, particularly in high-seismicity regions.

Seismic Rocking Response Analysis of 1/8 Scale Model for a Spent Fuel Storage Cask (사용후 연료 건식저장용기 1/8규모 축소모형 지진회전응답해석)

  • Lee J.H.;Seo K.S.;Koo G.H.;Cho C.H.;Choi B.I.;Lee H.Y.;Yeom S.H.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.383-389
    • /
    • 2005
  • This research is to develop a seismic response analysis method for a spent fuel storage cask. FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis os a seismic wave of El-centro earthquake, and the friction and damping coefficients in the analysis condition we obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for mechanical contact formulation. The analysis method was verified for rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests.

  • PDF

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Seismic Response Analysis of Steam Turbine-Generator Rotor System (2nd Report, Application of Wavelet Analysis) (증기터빈$\cdot$발전기축계의 지진응답해석 (제2보 : 웨이블렛 해석의 적용))

  • 양보석;김병욱;김용한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.813-821
    • /
    • 1999
  • This paper presents the technique using wavelet analysis to solve the seismic response of a steam turbine-generator rotor system subjected to earthquake excitations. A brief review of the wavelet transform and its discretization, time-frequency representation of the earthquake wave and the seismic response for a rotor system is presented. The Daubechies wavelet has been used for describing the time-frequency characteristics of the input and the response in case of a recorded accelerogram during 1995 Hyogoken Nanbu earthquake. Also, the results in the wavelet domain has been illustrated through comparison with the time domain simulation results.

  • PDF

Seismic modeling consider of inhomogeneous gas hydrate layer (불균질 가스하이드레이트 층을 고려한 탄성파 모델링)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Joong;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.489-492
    • /
    • 2007
  • The P-wave velocity at the formation which contains gas hydrate varies very wide upon gas hydrate existence. These features on seismic shot gather can not be simulated normally by numerical modeling of homogeneous medium so that we need that of random inhomogeneous medium instead. We, in this study generated random inhomogeneous medium using gaussian ACF, exponential ACF and von Karman ACF and that we supposed the random inhomogeneous medium be gas hydrate formation to execute numeric modeling. The modeling result shows the typical effect by scattering caused by random hydrate formation as is observed from seismic shot gather where hydrate exist.

  • PDF

A Study of Tunnel Position Interpretation using Seismic Travel Time and Amplitude Data Simulation (탄성파 주시 및 진폭 자료의 Simulation에 의한 터널 위치 추적에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • Seismic and georadar prospecting methods have been used to detect deep seated small tunnel in Korea. The tunnel position interpretation of seismic method has been performed mainly by wave travel time and amplitude. But it was very unstable to interpret the exact tunnel position because of short interval of two measuring boreholes and picking mistake of first arrivals. To solve this problem, this study applied travel-time and amplitude data simulation methods to detect tunnel position.

Dynamic simulation models for seismic behavior of soil systems - Part I: Block diagrams

  • Sahin, Abdurrahman
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.145-167
    • /
    • 2015
  • Digital simulation has recently become the preferred method for designing complex and dynamic systems. Simulation packages provide interactive, block-diagram environment for modeling and simulating dynamic models. The block diagrams in simulation models are flowcharts which describe the components of dynamic systems and their interaction. This paper is the first part of the study for determining the seismic behavior of soil systems. The aim of this part is to present the constructed block diagrams for discrete-time analysis of seismic site amplification in layered media for vertically propagating shear waves. Detailed block diagrams are constructed for single and multiple soil layers by considering wave propagation with and without damping, respectively. The block diagrams for recursive filter to model attenuation in discrete-time form are also constructed. Finite difference method is used for strain calculation. The block diagrams are developed by utilizing Simulink which is a software add-on to Matlab.