• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.025 seconds

Experimental Study on Seismic Performance of Base-Isolated Bridge (지진 격리된 교량의 내진성능에 대한 실험적 연구)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Effects of Tie Details on Seismic Performance of RC Columns Subjected to Low Compression Loads (낮은 압축력을 받는 철근콘크리트 기둥의 내진성능에 대한 띠철근 상세의 영향)

  • Kim, Chul Goo;Park, Hong Gun;Eom, Tae Sung;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.195-205
    • /
    • 2015
  • Various non-seismic tie details are frequently used for one- and two-story small buildings because the seismic demand on their deformation capacities is not relatively significant. To evaluate the effects of the non-seismic tie details on the seismic performance of reinforced concrete columns, six square columns with a cross section of $400{\times}400mm$ and six rectangular columns with a cross section of $250{\times}640mm$ were tested. The anchorage details at both ends and spacing of tie hoops, along with the cross-sectional shape and the magnitude of axial load, were considered as the primary test parameters. Test results showed that square columns had higher stiffness and lower lateral deformation rather than rectangular columns. Both lap spliced tie and U-shaped tie provided comparable or improved seismic performance to $90^{\circ}$ hook tie in terms of maximum strength, ductility, and energy dissipation. The predicted curves with modeling parameters in ASCE41-13 were conservative for test results of lap spliced tie and U-shaped tie specimens since plastic behavior after flexural yielding could not be considered. For economical design, ASCE41-13 should be revised with various test results of tie details.

Current practices and future directions of steel design in Japan

  • Yamaguchi, Eiki
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.159-168
    • /
    • 2005
  • Four design codes/regulations for steel structures in Japan are briefly reviewed. Some of them employ the limit state design concept while the others are still based on the allowable stress design concept. The process for revision is now in action. The directions in the development of structural design codes are also reported herein. It is noted that a current trend in this development is to employ the performance-based design concept that has been successfully implemented in some seismic design codes.

Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry

  • Siddiqui, Umair A.;Sucuoglu, Haluk;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.19-35
    • /
    • 2015
  • This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic response of older RC frames designed for gravity loads. It is found that the presence of weak infill walls considerably reduce deformations and damage in the upper stories while their influence at the critical ground story is not all that positive. Infill walls tend to localize damage at the critical story due to a peculiar frame-infill interaction, and impose larger internal force and deformation demands on the columns and beams bounding the infills. Therefore the general belief in earthquake engineering that infills develop a second line of defence against lateral forces in seismically deficient frames is nullified in case of low-strength infill walls in the presented experimental research.

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Structural Design of Nakanoshima Festival Tower

  • Okada, Ken;Yoshida, Satoshi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 2014
  • Nakanoshima Festival Tower is a 200 m high-rise complex building which contains a renewed 2700-seat capacity concert hall known as "Festival Hall" and offices including headquarter of a news company. In order to build up an office tower on the hall which requires large open space, a giant truss system is employed. The giant trusses being composed of mega-trusses and belt-trusses support all the building weight above them and transfer the load to the outside of the hall. The building also requires high seismic resistance performance for a news company. Application of mid-story seismic isolation enables the building to satisfy high-level seismic resistance criteria.

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.