DOI QR코드

DOI QR Code

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi (Department of Structural engineering, University of Tabriz) ;
  • Majid Barghian (Department of Structural engineering, University of Tabriz)
  • Received : 2023.09.02
  • Accepted : 2023.09.26
  • Published : 2023.10.25

Abstract

The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

Keywords

References

  1. Auad, G., Castaldo, P. and Almazan, J.L. (2022), "Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement", Earthq. Eng. Struct. Dyn., 51(13), 3171-3214. https://doi.org/10.1002/eqe.3719.
  2. Azizi, A. and Barghian, M. (2015), "Using pendulum column as base isolation", M.Sc. dissertation, University of Tabriz, Tabriz, Iran.
  3. Azizi, A. and Barghian, M. (2023a), "Introducing a multi-layer pendulum isolator and investigating its effect on structures' responses during some earthquakes", Struct., 57, 105206. https://doi.org/10.1016/j.istruc.2023.105206.
  4. Azizi, A. and Barghian, M. (2023b), "Investigating the "pendulum column" isolator with flexible piers", Earthq. Struct., 24(6), 405-413. https://doi.org/10.12989/eas.2023.24.6.405.
  5. Barghian, M. and Shahabi, A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Health Monit., 14, 177-185. https://doi.org/10.1002/stc.115.
  6. Cancellara, D., Angelis, F.D. and Pasquino, M. (2013), "A novel seismic base isolation system consisting of a lead rubber bearing in series with a friction slider", J. Appl. Mech. Mater., 256, 2174-2184. https://doi.org/10.4028/www.scientific.net/AMM.256-259.2174.
  7. Cao, L. and Li, C. (2021), "A high performance hybrid passive base-isolated system", Struct. Control Health Monit., 29, (3), 1-26, e2887. https://doi.org/10.1002/stc.2887.
  8. Castaldo, P., Amendola, G., Giordano, L. and Miceli, E. (2022), "Seismic reliability assessment of isolated multi-span continuous deck bridges", Ing. Sismica, 39(3), 26-51.
  9. Castaldo, P. and Miceli, E. (2023), "Optimal single concave sliding device properties for isolated multi-span continuous deck bridges depending on the ground motion characteristics", Soil Dyn. Earthq. Eng., 173, 108128. https://doi.org/10.1016/j.soildyn.2023.108128.
  10. Chen, X., De Domenico, D. and LI, C. (2023), "Seismic resilient design of rocking tall bridge piers using inerter-based systems", Eng. Struct., 281, 115819. https://doi.org/10.1016/j.engstruct.2023.115819.
  11. Cirelli, M., Gregori, J., Valentini, P.P. and Pennestri, E. (2019), "A design chart approach for the tuning of parallel and trapezoidal bifilar centrifugal pendulum", Mech. Mach. Theory, 140, 711-729. https://doi.org/10.1016/j.mechmachtheory.2019.06.030.
  12. Deringol, A.H. and Guneyisi, E.M. (2019), "Effect of friction pendulum bearing properties on behaviour of buildings subjected to seismic loads", Soil Dyn. Earthq. Eng., 125, 105746. https://doi.org/10.1016/j.soildyn.2019.105746.
  13. Gino, D., Miceli, E. and Castaldo, P. (2023), "Seismic reliability analysis of isolated deck bridges using friction pendulum devices", Proc. Struct. Integr., 44, 1435-1442. https://doi.org/10.1016/j.prostr.2023.01.184.
  14. Islam, S., Jumaat, M.J. and Zamin, M. (2011), "Seismic isolation in buildings to be a practical reality: Behavior of structure and installation technique", J. Eng. Technol. Res., 3(4), 99-117.
  15. Izumi, M. (1988), "State-of-the-art report: Base isolation and passive seismic response control", Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, Japan, August.
  16. Kim, Y., Shahriyer, H. and Hu, J. (2022), "Seismic performance evaluation according to HSS and CFST columns of 3D frame buildings with rubber friction bearing (RFB)", Mater., 15(4), 1281. https://doi.org/10.3390/ma15041281.
  17. Kelly, J.M. (1986), "A seismic base isolation: Review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0.
  18. Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. and Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589.
  19. Li, Y. and Li, J. (2014), "Base isolator with variable stiffness and damping: Design, experimental testing and modelling", Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials, Byron Bay, Australia, December.
  20. Lin, A.N. and Shenton, III H.W. (1992), "Seismic performance of fixed base and base isolated steel frames", ASCE, J. Eng. Mech., 118(5), 921-941. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(921).
  21. Luco, J.E. (2014), "Effects of soil-structure interaction on seismic base isolation", Soil Dyn. Earthq. Eng., 66, 167-177. https://doi.org/10.1016/j.soildyn.2014.05.007.
  22. Lupasteanu, V., Soveja, L., Lupasteanu, R. and Chingalata, C. (2019), "Installation of a base isolation system made of friction pendulum sliding isolators in a historic masonry orthodox church", Eng. Struct., 188, 369-381. https://doi.org/10.1016/j.engstruct.2019.03.040.
  23. Monfared, H., Shirvani, A. and Nwaubani, S. (2013), "An investigation into the seismic base isolation from practical perspective", Int. J. Civil Struct. Eng., 3(3), 451-463.
  24. Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures from Theory to Practice, John Wiley & Sons, Hoboken, NJ, USA.
  25. Shah, V.M. and Soni, D.P. (2017), "Response of the double concave friction pendulum system under triaxial ground excitations", Proc. Eng., 173, 1870-1877. https://doi.org/10.1016/j.proeng.2016.12.240.
  26. Shenton, III H.W. and Lin, A.N. (1993), "Relative performance of fixed based and base isolated concrete frame", ASCE Struct. Eng., 119(10), 2952-2968. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:10(2952).
  27. Shrimali, M.K., Bharti, S.D. and Dumne, S.M. (2015), "Seismic response analysis of coupled building involving MR damper and elastomeric base isolation", Ain Shams Eng. J., 6, 457-470. https://doi.org/10.1016/j.asej.2014.12.007.
  28. Su, L., Ahmadi, G. and Tadjbakhsh, I.G. (1991), "Performance of sliding resilient-friction base-isolation system", ASCE J. Struct. Eng., 117(1), 165-181. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(165).
  29. Thomas, T. and Mathai, A. (2016), "Study of base isolation using friction pendulum bearing system", J. Mech. Civil Eng., 2006, 19-23.
  30. Vrochidou, E., Alvanitopoulos, P. F., Andreadis, I., Elenas, A. and Mallousi, K. (2014), "Synthesis of artificial spectrum-compatible seismic accelerograms", Measure. Sci. Tech., 25(8), 085002.
  31. Wright, K.R. and Zegarra, A.V. (2000), "Machu Picchu: A Civil Engineering Marvel", ASCE Press, Reston, VA, USA.
  32. Xiuting, S., Jian, X. Feng, W. and Shu, Z. (2018), "A novel isolation structure with flexible joints for impact and ultralow-frequency excitations", Int. J. Mech. Sci., 146, 366-367. https://doi.org/10.1016/j.ijmecsci.2018.08.009.
  33. Zhong, C. and Christopoulos, C. (2022), "Shear-controlling rocking-isolation podium system for enhanced resilience of high-rise buildings", Earthq. Eng. Struct. Dyn., 51(6), 1363-1382. https://doi.org/10.1002/eqe.3619.