• Title/Summary/Keyword: pendulum column

Search Result 10, Processing Time 0.032 seconds

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

Investigating the "pendulum column" isolator with flexible piers

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.405-413
    • /
    • 2023
  • Various methods have been used to strengthen structures against earthquakes. Isolator systems are among the methods to control the structure's response. Instead of increasing the strength and capacity of the structure, these systems react to earthquakes. In this paper, an isolator system was investigated with the flexible piers of ∨ and ∧ elements, which were perpendicular to each other and connected by a rod hinged at both ends. The behavior of the isolator system was studied. Many structures have non-rigid connections; the effect of this issue was considered in the pendulum column's performance in this paper. Its mathematical equations were derived, solved with MATLAB software, and compared with ABAQUS results. Later on, the isolator system was investigated during different earthquakes. The results show that this mechanism is suitable as an isolator. The period was found to be longer in the flexible pier form. The flexible piers have an influential role in the system's response by reducing the system's stiffness considerably. Among the different damping ratios, those with more than 15% had better results. Finally, the tested model verified the theory.

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Innovative Liquid Damper for Wind-Induced Vibration of Buildings: Performance after 4 Years of Operation, and Next Iteration

  • Ghisbain, Pierre;Mendes, Sebastian;Pinto, Marguerite;Malsch, Elisabeth
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.117-121
    • /
    • 2021
  • In 2016, an innovative liquid damper system was installed on the roof of a 35-story modular building in Brooklyn, NY to mitigate wind-induced movement of the structure. The new damper presented several advantages over traditional pendulum, liquid column or sloshing dampers, including lower fabrication and maintenance costs, modularity, and the flexibility to be tuned to a wider range of frequencies. The performance of the system was monitored on a regular basis over the past four years and found adequate, with only minor re-tuning and maintenance operations needed. Based on the experience and data gained through this project, a second iteration of the damper was developed. Called Hummingbird, the improved system further mitigates maintenance and tuning concerns, while allowing significant space savings.

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.

Performance Comparison Analysis of a Bridge Installed with Anti-seismic Devices using PVDF/MgO Friction Material According to Friction Analysis Models (마찰해석모델에 따른 PVDF/MgO 마찰재 적용 면진 장치가 설치된 교량의 성능 비교 분석)

  • Hye-Ri Park;Sung-Jo Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2023
  • In this study, structural analyses were conducted to analyze the performance of a bridge to which friction pendulum systems (FPSs) were applied using different friction models. A Coulomb friction model and a rate dependent friction model were constructed using the friction coefficient of a PVDF/MgO friction material to analyze the effect of different friction analysis models. The Coulomb friction model uses a single friction coefficient regardless of friction velocity, while the rate dependent friction model can reflect the change in the friction coefficient with friction velocity. Nonlinear time history and seismic fragility analyses were conducted to confirm responses of the bridge. The seismic responses of a deck and a column were used to evaluate the performance of the base isolated bridge, and a friction model that can effectively evaluate the performance of isolated bridges was analyzed.

Cephalometric study on head posture according to the Classification of Malocclusion (부정교합 분류에 따른 두경부 위치의 두부방사선 계측학적 연구)

  • Hwang, Chung-Ju;Kim, Suk-Hyun;Kil, Jae-Kyung
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.221-230
    • /
    • 1997
  • It has been known that head posture may influence directly and/or indirectly the growth and development of craniofacial morphology and can also be influenced by the funtional demand of physiologic activity. It was reported that facial morphology has close relationships with hyoid bone position and head posture. In many previous studies, Natural Head Posture(NHP) was guided, and also it was shown that NHP has high degree of reproducibility. Otherwise, There was few study about the relationship of head posture, with routine cephalometric film which is used for clinical orthodontic purpose. In this study, according to the Wits and ANB of initial cephalometric film which was taken with vertical pendulum as representative of true vertical reference line. We classified the subjects which is comprised of 60 adult female patients into Class I, II, III (Cl I, II, III)and we tried to find out the correlation of head posture and hyoid bone position according to the classification of malocclusion. As a result of our research, we found the followigs. 1. In comparison of vertical position of hyoid bone relative to the cranial base. the position of hyoid bone of Cl III was lower than that of Cl II. 2. In comparison of anteriorpostes or position of hyoid bone, relative to the cervical column. The position of hyoid bone of Cl III was more anterior than that of a II 3. in comparison of vertical position of hyoid bone relative to mandible. There was no significant correlation aumoug the groups of malocclusion. 4. ANB and Wits showed no significant correlation with hyoid bone position. 5. The relative extension of head, which was noted in Cl II, showed negative with Sum, ANB. 6. In Cl II and Cl III, Post to Ant facial height showed positive correlation with NSL/VER.

  • PDF