• Title/Summary/Keyword: seismic isolated structure

Search Result 172, Processing Time 0.021 seconds

Evaluation of the Soil-structure Interaction Effect on Seismically Isolated Nuclear Power Plant Structures (지반-구조물 상호작용이 면진 원전구조물의 지진응답에 미치는 영향 평가)

  • Lee, Eun-haeng;Kim, Jae-min;Joo, Kwang-ho;Kim, Hyun-uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • This study intends to evaluate the conservativeness of the fixed-base analysis as compared to the soil-structure interaction (SSI) analysis for the seismically isolated model of a nuclear power plant in Korea. To that goal, the boundary reaction method (BRM), combining frequency-domain and time-domain analyses in a twofold process, is adopted for the SSI analysis considering the nonlinearity of the seismic base isolation. The program KIESSI-3D is used for computing the reaction forces in the frequency domain and the program MIDAS/Civil is applied for the nonlinear time-domain analysis. The BRM numerical model is verified by comparing the results of the frequency-domain analysis and time-domain analysis for the soil-structure system with an equivalent linear base isolation model. Moreover, the displacement response of the base isolation and the horizontal response at the top of the structure obtained by the nonlinear SSI analysis using BRM are compared with those obtained by the fixed-base analysis. The comparison reveals that the fixed-base analysis provides conservative peak deformation for the base isolation but is not particularly conservative in term of the floor response spectrum of the superstructure.

three dimensional seismic analysis of liquid storage tanks considering liquid-structure-soil interaction (유체-구조물-지반 상호작용을 고려한 유체저장탱크의 3차원 지진해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.99-106
    • /
    • 1999
  • In this study a base-isolated liquid storage tank subjected to seismic ground motion is numerically simulated on frequency , domain considering three-dimensional liquid-structure-soil interaction. A hybrid formulation which combines the versatility of finite elements for tank structure and the efficiency of boundary elements for liquid and soil region is adopted for efficient modeling. The base-isolation system using the effective stiffness and damping ratio is also included in this formulation. in order to demonstrate the accuracy and validity of the developed solution the numerical results were compared with the reference solutions in each interaction problem. The effects of the liquid filling ratio and the stiffness of base-isolation system on the behavior of the liquid storage tanks are analyzed.

  • PDF

Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.387-395
    • /
    • 1998
  • In general, the laminated rubber bearing (LRB), a composite structure laminated with the elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships between the restoring force and shear deflection. The representative nonlinear characteristics of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic shear deflections affect the horizontal stiffness and the damping characteristics. The hardening behavior of LRB in large shear deflection region results in an increased horizontal stiffness and therefore, has a great impacton the seismic responses. In this paper, the seismic response analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The results on seismic responses are compared with those obtained using the widely used hysteretic hi-linear model. The new model is found to reveal the greater amount of peak acceleration response.

  • PDF

Effect of Rocking Behavior of Isolated Nuclear Structures and Sampling Technique for Isolation-System Properties on Clearance-to-stop (면진 원전구조물의 전도거동과 면진시스템 특성에 대한 샘플링 기법이 정지거리에 미치는 영향)

  • Han, Min Soo;Hong, Kee Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.293-302
    • /
    • 2015
  • ASCE 4 requires that a hard stop be built around the seismic isolation system in nuclear power plants. In order to maintain the function of the isolation system, this hard stop is required to have clearance-to-stop, which should be no less than the 90th-percentile displacements for 150% Design Basis Earthquake (DBE) shaking. Huang et al. calculated clearance-to-stop by using a Latin Hypercube Sampling technique, without considering the rocking behavior of the isolated structure. This paper investigates the effects on estimation of clearance-to-stop due to 1) rocking behavior of the isolated structure and 2) sampling technique for considering the uncertainties of isolation system. This paper explains the simplified analysis model to consider the rocking behavior of the isolated structure, and the input earthquakes recorded at Diablo Canyon in the western United States. In order to more accurately approximate the distribution tail of the horizontal displacement in the isolated structure, a modified Latin Hypercube Sampling technique is proposed, and then this technique was applied to consider the uncertainty of the isolation system. Through the use of this technique, it was found that rocking behavior has no significant effect on horizontal displacement (and thus clearance-to-stop) of the isolated structure, and the modified Latin Hypercube Sampling technique more accurately approximates the distribution tail of the horizontal displacement than the existing Latin Hypercube Sampling technique.

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

Effects of shear keys on seismic performance of an isolation system

  • Wei, Biao;Li, Chaobin;Jia, Xiaolong;He, Xuhui;Yang, Menggang
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.345-360
    • /
    • 2019
  • The shear keys are set in a seismic isolation system to resist the long-term service loadings, and are cut off to isolate the earthquakes. This paper investigated the influence of shear keys on the seismic performance of a vertical spring-viscous damper-concave Coulomb friction isolation system by an incremental dynamic analysis (IDA) and a performance-based assessment. Results show that the cutting off process of shear keys should be simulated in a numerical analysis to accurately predict the seismic responses of isolation system. Ignoring the cutting off process of shear keys usually leads to untrue seismic responses in a numerical analysis, and many of them are unsafe for the design of isolated structure. And those errors will be increased by increasing the cutting off force of shear keys and decreasing the spring constant of shear keys, especially under a feeble earthquake. The viscous damping action postpones the cutting off time of shear keys during earthquakes, and reduces the seismic isolation efficiency. However, this point can be improved by increasing the spring constant of shear keys.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

A Study of Seismic Resistant Design for Base-Isolated Bridges(II) (지진에 대비한 기초분리 교량의 설계법에 관한 연구(II))

  • Lee, Sang Soo;Yu, ChulSoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.637-647
    • /
    • 1997
  • As stated in Part(I), the use of the isolator is meant to protect a structure from seismic risk, by concentrating the inelastic deformations to relatively cheap and replaceable devices while the rest of the structures remains elastic. This research has been carried out to investigate the effects of various structural parameters and isolator characteristics on the seismic response of Base Isolated Bridges. Simplified analysis method for practical design is developed by using the results. The Proposed Code-Type approach method can be used to estimate the inertial forces accurately, not only at the isolator but throughout the height of the Base-Isolated Bridges. The proposed method is recommended to use in preliminary design tool or even a final design tool for Base Isolated Bridges. For the validation of simplified design method, examples with artificial earthquake time history and design response spectrum for P.C Box Bridge with bilinear hysteretic steel damper are evaluated.

  • PDF

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

Analyses of Sloshing and Seismic Responses for Cylindrical Vessel Containing Fluid (유체저장 원통용기의 슬로싱 현상 및 지진응답해석)

  • Lee, Jae-Han;Yoo, Bong;Koo, Gyeong-Hoi;Yang, Kyung-Taek;Choi, Hyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.157-164
    • /
    • 1996
  • Analyses of linear sloshing modes and seismic responses for cylindrical vessel containing fluid are performed by general finite element computer program, ANSYS. In order to examine the effectiveness of the sloshing analysis procedure, the calculated results are compared with experimental ones in the literature. Liquid sloshing effects in cylindrical LNG vessel are analyzed and the fluid-structure interaction effects are evaluated under the seismic loads. The sloshing frequencies calculated agree well with experimental results. The forces and moments for fixed and isolated LNG vessel are also calculated to evaluate the sloshing effects.

  • PDF