• Title/Summary/Keyword: seismic effect

Search Result 1,568, Processing Time 0.027 seconds

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

Variation of Engineering Geological Characteristics of Jurassic Granite in Wonju Due to Freeze-Thaw Weathering (동결-융해 풍화에 의한 원주지역 쥬라기 화강암의 지질공학적 특성변화)

  • Um, Jeong-Gi;Woo, Ik;Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.261-272
    • /
    • 2009
  • An experimental study of the accelerated weathering was performed to investigate the variations of physicomechanical properties of deteriorated rocks due to freeze-thaw weathering for the Jurassic granite specimens from Wonju, Gangwon-do. Each complete cycle of freeze and thaw was lasted 24 hours, comprising 2 hours saturating in vacuum chamber, 8 hours freezing at -20$\pm1^{\circ}C$ and 14 hours thawing at room temperature. Freeze-thaw cycles were implemented with measuring the index physical properties as well as geometries of microfractures. The seismic velocity was found to decrease with increasing freeze-thaw cycles. On the other hand, absorption tends to increase with freeze-thaw cycles. In the end, it was concluded that variations of the index properties of deteriorated specimen depend on its initial properties and flaws in rock. The size and density of the traces of the microfracture on slab specimen were changed continuously with increasing freeze-thaw weathering. The results obtained in this study show that the box fractal dimension($D_B$) has the strong capability of quantifying the combined effect of size and density of the microfractures.

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.

Extracting Foundation Input Motion Considering Soil-Subterranean Level Kinematic Interaction (지하층-지반 운동학적 상호작용을 고려한 기초저면의 설계지반운동 산정)

  • Sadiq, Shamsher;Yoon, Jinam;Kim, Juhyong;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.31-37
    • /
    • 2018
  • Most of tall building systems are composed of above-ground structure and underground structure used for parking and stores. The underground structure may have a pronounced influence on tall building response, but its influence is still not well understood. In a widely referred report on seismic design of tall buildings, it is recommended to model the underground structure ignoring the surrounding ground and to impose input ground motion calculated considering the underground structure-soil kinematic interaction between at its base. In this study, dynamic analyses are performed on 1B and 5B basements. The motions at the base are calculated to free field responses. The motions are further compared to two procedures outlined in the report to account for the kinematic interaction. It is shown that one of the procedure fits well for the 1B model, whereas both procedures provide poor fit with 5B model analysis result.

A study for the performance evaluation of concrete block assembly wall without using mortar (무모르타르로 건식조립된 콘크리트블록 벽체의 성능평가 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.203-210
    • /
    • 2019
  • A recent earthquake on the Korean Peninsula caused much damage to masonry buildings, and research on performance evaluation has been underway. A masonry building is generally constructed using wet construction and is affected by temperature, which reduces the efficiency of the construction. In this study, we propose a dry construction technique for assembling concrete blocks without using mortar and evaluated its performance through experimental and analytical research. To evaluate the performance, experiments were carried out for the prismatic compressive strength, direct terminal strength, and diagonal tensile strength of the dry construction wall. The adequacy of the cross section shape was also reviewed through FEM analysis. The results show that the compressive strength and diagonal tensile strength could exert a certain intensity or higher. Furthermore, the H-type module of a key block acted as a shear key for the entire concrete block, which resulted in excellent shear strength performance. In addition, the shape and thickness of the main block have a major effect on the strength performance of each block. Therefore, an optimal shape and the proposed dry construction method could be applied to replace the wet method by studying the construction or seismic performance of the proposed method.

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles (억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석)

  • Son, Su-Won;Im, Jong-Chul;Seo, Min-Su;Hong, Seok-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.