• Title/Summary/Keyword: seismic design concept

검색결과 180건 처리시간 0.033초

중진지역에서의 다경간연속교의 내진설계 방향 (Seismic Design Strategies of Multi-Span Continuous Bridges in Moderate Seismicity Region)

  • 김재관;김익현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.292-299
    • /
    • 2002
  • It has been realized that the design codes and underlying design concept of high seismicity region may not be appropriate to low and moderate seismicity regions. The aim of this paper is to search seismic design strategies that are appropriate to moderate seismicity regions. The characteristics of seismic hazard in moderate seismicity regions are reviewed. The seismic responses of multi-span continuous bridges subjected to the ground shaking of moderate intensity are examined. The present code on seismic design of bridges is briefly reviewed. Based on these observations, design principles and strategies appropriate to the moderate seismicity regions are proposed for the multi-span continuous bridge

  • PDF

건축물 내진능력 표현에 관한 고찰 및 제언 (Considerations and Suggestions for Expressing of Seismic Capacity of Buildings)

  • 이철호;박지훈
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.517-526
    • /
    • 2016
  • In this paper, some popular intensity measures of earthquakes including magnitude, MMI, and PGA as well as their empirical relationships are briefly reviewed since they have been widely used without prudence by mass media, the public, and even the government when asking or expressing the seismic capacity of buildings. The basic concept of current seismic design is also presented in order to facilitate relevant discussions. It is emphasized that expressing the building seismic capacity simplistically in terms of seismological quantities or terminologies like magnitude and MMI is inherently irrational, may be misleading the stakeholders, and should be avoided. Alternative expressions, more rational and consistent with current seismic design philosophy and practice, are recommended.

유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력 (Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test)

  • 박창규;박진영;조대연;이대형;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 석상근;손혁수;정철호;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

위험도기반 최대예상지진에 근거한 국내 내진설계 지도 (Domestic Seismic Design Maps Based on Risk-Targeted Maximum- Considered Earthquakes)

  • 신동현;김형준
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.93-102
    • /
    • 2015
  • This study evaluates collapse probabilities of structures which are designed according to a domestic seismic design code, KBC2009. In evaluating their collapse probabilities, to do this, probabilistic distribution models for seismic hazard and structural capacity are required. In this paper, eight major cities in Korea are selected and the demand probabilistic distribution of each city is obtained from the uniform seismic hazard. The probabilistic distribution for the structural capacity is assumed to follow a underlying design philosophy implicitly defined in ASCE 7-10. With the assumptions, the structural collapse probability in 50 years is evaluated based on the concept of a risk integral. This paper then defines an mean value of the collapse probabilities in 50 years of the selected major cities as the target risk. Risk-targeted spectral accelerations are finally suggested by modifying a current mapped spectral acceleration to meet the target risk.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

추철근 겹침이음된 철근콘크리트 교각의 보강에 의한 내진성능평가 (Seismic Performance and Retrofit of Reinforced Concrete Bridge Piers with Spliced Longitudinal Steels)

  • 정영수;이재형
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.179-186
    • /
    • 2001
  • It has been known that lap splicing in the longitudinal reinforcement of bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were usually be located in the plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. This research is to evacuate the seismic performance of reinforced concrete bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4.0 were made with three confinement ratios and three types of lap splicing. Quasi-static tests under three different axial load levees were conducted. It has been observed that displacement ductility ratios of test columns with lap splicing were significantly reduced.

  • PDF

등가 에너지 개념을 이용한 비좌굴 가새골조의 내진설계 (Seismic Design of Buckling-Restrained Braced frame Using Equivalent Energy Concept)

  • 김진구;최현훈;원영섭
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.47-55
    • /
    • 2003
  • 본 연구에서는 등가 에너지 개념에 근거하여 비좌굴 가새골조의 간편한 내진설계방법을 제안하였다. 단자유도계로 치환된 구조물의 지진 입력에너지를 응답 스펙트럼으로부터 구한 후, 탄성에너지와 소성에너지를 등가 에너지 개념을 이용하여 산정한다. 이렇게 구한 소성에너지를 분배비에 따라 각 층에 분배하고, 모든 소성에너지는 가새에 의하여 소산된다고 가정하여 각 가새의 단면적을 산정할 수 있다. 제안된 방법을 검증하기 위하여 3층, 6층, 20층 가새골조를 제안된 방법으로 주어진 목표변위를 만족하도록 설계하고, 인공지진을 이용하여 결과를 검증하였다. 해석결과에 의하면 저층 건물의 최상층 변위는 비교적 목표변위를 만족하였으나, 20층 건물의 최상층 변위는 목표변위보다 매우 작아 가새가 과다하게 설계된 것으로 나타났다.

겹침이음 상세에 따른 철근콘크리트 교각의 내진성능 (Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice)

  • 이재훈;손혁수;석상근;정철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seisimc performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF