• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.022 seconds

Development of Seismic Performance Estimation Service of Bridge through Seismic Risk Assessment (지진위험도평가 방법을 통한 교량의 내진성능 추정 서비스 개발)

  • Cho, Han Min;Lee, Jin Hyuk;Park, Ki Tae;Kim, Kun Soo;Jung, Kyu San;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.535-542
    • /
    • 2023
  • In order to understand the seismic performance of a bridge, it is common to review through seismic performance evaluation and numerical analysis of the target bridge. Seismic performance evaluation and review through numerical analysis are analysis methods for specific target bridges, and many problems can arise in each management body managing bridges nationwide. Therefore, in this study, research was conducted to estimate the seismic performance of public bridges with various types and characteristics. Seismic performance was estimated by applying the seismic risk assessment method, calculating the seismic fragility curve for the type and specifications of the bridge, and estimating the seismic performance of the bridge in use by applying the domestic seismic design standard. In addition, by installing it on the platform, service items were established so that users can easily review the estimation of seismic performance of domestic bridges.

Development of Compression-Only Bridge Seismic Reinforcement Method (압축전담 교량 내진보강공법 개발 연구)

  • Jang, Yoo-Sik;Yoon, Won-Sub;You, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1221-1230
    • /
    • 2022
  • In this study, a seismic reinforcement method was studied to improve the seismic performance of aged bridges. The construction method developed in this study is a compression-only bridge seismic reinforcement method, and has excellent economic feasibility and workability compared to existing construction methods. In the case of aged bridges, there was an advantage that could compensate for the disadvantages that it was difficult to apply the existing reinforcement method. For the newly developed method, the effect of reinforcement was analyzed through resin analysis. As a result of the analysis, when the reinforcement was applied, the axial reinforcement effect was excellent, and the field applicability was excellent as it showed better results than the existing seismic isolation backing method.

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

Effect of Simplified Methods in Seismic Analysis of Bridges (교량의 지진해석에서 단순해석의 효과)

  • Choi, Eunsoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.729-734
    • /
    • 2002
  • The effect of several simplified methods of seismic analysis is estimated. The pounding/contacting of superstructures were considered in the multispan simply supported bridge and the multispan continuous bridge. Although nonlinear time history analysis is generally used for seismic analysis of bridges, many codes including AASHTO propose several simplified analysis methods. AASHTO, however, does not mention pounding. Therefore, the simplified methods may produce results that are different from those of nonlinear time history analysis. This study developed nonlinear analytical models of the two types of bridges mentioned. The models were then modified to the simplified linear models for simplified analysis. The results of the simplified methods were compared with those of nonlinear time history analysis. It was found that including of the pounding/contacting element in the simplified methods generated responses similar to those of the nonlinear time history analysis.

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.

Seismic Rocking Response Analysis of 1/8 Scale Model for a Spent Fuel Storage Cask (사용후 연료 건식저장용기 1/8규모 축소모형 지진회전응답해석)

  • Lee J.H.;Seo K.S.;Koo G.H.;Cho C.H.;Choi B.I.;Lee H.Y.;Yeom S.H.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.383-389
    • /
    • 2005
  • This research is to develop a seismic response analysis method for a spent fuel storage cask. FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis os a seismic wave of El-centro earthquake, and the friction and damping coefficients in the analysis condition we obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for mechanical contact formulation. The analysis method was verified for rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests.

  • PDF

PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR POWER PLANTS - CURRENT PRACTICE FROM A EUROPEAN PERSPECTIVE

  • Klugel, Jens-Uwe
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1243-1254
    • /
    • 2009
  • The paper discusses the methodology and the use of probabilistic seismic hazard analysis (PSHA) for nuclear power plants from a European perspective. The increasing importance of risk-informed approaches in the nuclear oversight process observed in many countries has contributed to increasing attention to PSHA methods. Nevertheless significant differences with respect to the methodology of PSHA are observed in Europe. The paper gives an overview on actual projects and discusses the differences in the PSHA-methodology applied in different European countries. These differences are largely related to different approaches used for the treatment of uncertainties and to the use of experts. The development of a probabilistic scenario-based approach is identified as a meaningful alternative to the development of uniform hazard spectra or uniform confidence spectra.

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF