• Title/Summary/Keyword: segmentation error rate

Search Result 55, Processing Time 0.027 seconds

Adaptive Cross-Device Gait Recognition Using a Mobile Accelerometer

  • Hoang, Thang;Nguyen, Thuc;Luong, Chuyen;Do, Son;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.333-348
    • /
    • 2013
  • Mobile authentication/identification has grown into a priority issue nowadays because of its existing outdated mechanisms, such as PINs or passwords. In this paper, we introduce gait recognition by using a mobile accelerometer as not only effective but also as an implicit identification model. Unlike previous works, the gait recognition only performs well with a particular mobile specification (e.g., a fixed sampling rate). Our work focuses on constructing a unique adaptive mechanism that could be independently deployed with the specification of mobile devices. To do this, the impact of the sampling rate on the preprocessing steps, such as noise elimination, data segmentation, and feature extraction, is examined in depth. Moreover, the degrees of agreement between the gait features that were extracted from two different mobiles, including both the Average Error Rate (AER) and Intra-class Correlation Coefficients (ICC), are assessed to evaluate the possibility of constructing a device-independent mechanism. We achieved the classification accuracy approximately $91.33{\pm}0.67%$ for both devices, which showed that it is feasible and reliable to construct adaptive cross-device gait recognition on a mobile phone.

Speaker-Independent Korean Digit Recognition Using HCNN with Weighted Distance Measure (가중 거리 개념이 도입된 HCNN을 이용한 화자 독립 숫자음 인식에 관한 연구)

  • 김도석;이수영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1422-1432
    • /
    • 1993
  • Nonlinear mapping function of the HCNN( Hidden Control Neural Network ) can change over time to model the temporal variability of a speech signal by combining the nonlinear prediction of conventional neural networks with the segmentation capability of HMM. We have two things in this paper. first, we showed that the performance of the HCNN is better than that of HMM. Second, the HCNN with its prediction error measure given by weighted distance is proposed to use suitable distance measure for the HCNN, and then we showed that the superiority of the proposed system for speaker-independent speech recognition tasks. Weighted distance considers the differences between the variances of each component of the feature vector extraced from the speech data. Speaker-independent Korean digit recognition experiment showed that the recognition rate of 95%was obtained for the HCNN with Euclidean distance. This result is 1.28% higher than HMM, and shows that the HCNN which models the dynamical system is superior to HMM which is based on the statistical restrictions. And we obtained 97.35% for the HCNN with weighted distance, which is 2.35% better than the HCNN with Euclidean distance. The reason why the HCNN with weighted distance shows better performance is as follows : it reduces the variations of the recognition error rate over different speakers by increasing the recognition rate for the speakers who have many misclassified utterances. So we can conclude that the HCNN with weighted distance is more suit-able for speaker-independent speech recognition tasks.

  • PDF

Comparison of Word Extraction Methods Based on Unsupervised Learning for Analyzing East Asian Traditional Medicine Texts (한의학 고문헌 텍스트 분석을 위한 비지도학습 기반 단어 추출 방법 비교)

  • Oh, Junho
    • Journal of Korean Medical classics
    • /
    • v.32 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Objectives : We aim to assist in choosing an appropriate method for word extraction when analyzing East Asian Traditional Medical texts based on unsupervised learning. Methods : In order to assign ranks to substrings, we conducted a test using one method(BE:Branching Entropy) for exterior boundary value, three methods(CS:cohesion score, TS:t-score, SL:simple-ll) for interior boundary value, and six methods(BExSL, BExTS, BExCS, CSxTS, CSxSL, TSxSL) from combining them. Results : When Miss Rate(MR) was used as the criterion, the error was minimal when the TS and SL were used together, while the error was maximum when CS was used alone. When number of segmented texts was applied as weight value, the results were the best in the case of SL, and the worst in the case of BE alone. Conclusions : Unsupervised-Learning-Based Word Extraction is a method that can be used to analyze texts without a prepared set of vocabulary data. When using this method, SL or the combination of SL and TS could be considered primarily.

DTM Generation and Buildings Detection Using LIDAR Data

  • Shao, Yi-Chen;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.923-926
    • /
    • 2003
  • In this paper we propose a scheme to generate DTM and detect buildings on DSM generated from LIDAR data. Two stages are performed. The first stage is to perform object segmentation by using two morphology operations namely, flattening and H-Dome transformation. After filtering out the object points above the ground, we used the non-object points to generate DTM. The second stage is to detect buildings from the objects by analyzing differential slopes. The test data is in raster form with 1m spacing around Hsin-Chu Scientific Area in Taiwan. The mean error is -0.16m and the RMSE is 0.45m for DTM generation. The successful rate for building detection is 87.7%.

  • PDF

A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm (오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구)

  • Song, Do-Sun;Lee, Jae-Gheon;Kim, Seok-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.5-14
    • /
    • 1994
  • This paper is about an experiment of speaker-independent automatic Korean spoken words recognition using Multi-Layered Perceptron and Error Back-propagation algorithm. The object words are 50 citynames of D.D.D local numbers. 43 of those are 2 syllables and the rest 7 are 3 syllables. The words were not segmented into syllables or phonemes, and some feature components extracted from the words in equal gap were applied to the neural network. That led independent result on the speech duration, and the PARCOR coefficients calculated from the frames using linear predictive analysis were employed as feature components. This paper tried to find out the optimum conditions through 4 differerent experiments which are comparison between total and pre-classified training, dependency of recognition rate on the number of frames and PAROCR order, recognition change due to the number of neurons in the hidden layer, and the comparison of the output pattern composition method of output neurons. As a result, the recognition rate of $89.6\%$ is obtaimed through the research.

  • PDF

Rate-Distortion Based Segmentation of Tumor Region in an Breast Ultrasound Volume Image (유방 초음파 볼륨영상에서의 율왜곡 기반 종양영역 분할)

  • Kwak, Jong-In;Kim, Sang-Hyun;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.51-58
    • /
    • 2005
  • This paper proposes an efficient algorithm for extracting a tumor region from an breast ultrasound volume image by using rate-distortion (R-D) based seeded region growing. In the proposed algorithm the rate and the distortion represent the roughness of the contour and the dissimilarity of pixels in a region, respectively. Staring from an initial seed region set in each cutting plane of a volume, a pair of the seed region and one of adjacent regions whose R-D cost is minimal is searched and then they are merged into a new updated seed region. This procedure is recursively performed until the averaged R-D cost values per the number of contour pixels in the seed region becomes maxim. As a result, the final seed region has good pixel homogeneity and a much smooth contour. Finally, the tumor volume is extracted using the contours of the final seed regions in all the cutting planes. Experimental results show that the averaged error rate of the proposed method is shown to be below 4%.

De-blurring Algorithm for Performance Improvement of Searching a Moving Vehicle on Fisheye CCTV Image (어안렌즈사용 CCTV이미지에서 차량 정보 수집의 성능개선을 위한 디블러링 알고리즘)

  • Lee, In-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.408-414
    • /
    • 2010
  • When we are collecting traffic information on CCTV images, we have to install the detect zone in the image area during pan-tilt system is on duty. An automation of detect zone with pan-tilt system is not easy because of machine error. So the fisheye lens attached camera or convex mirror camera is needed for getting wide area images. In this situation some troubles are happened, that is a decreased system speed or image distortion. This distortion is caused by occlusion of angled ray as like trembled snapshot in digital camera. In this paper, we propose two methods of de-blurring to overcome distortion, the one is image segmentation by nonlinear diffusion equation and the other is deformation for some segmented area. As the results of doing de-blurring methods, the de-blurring image has 15 decibel increased PSNR and the detection rate of collecting traffic information is more than 5% increasing than in distorted images.

Mobile Application based on Image Processing and a Proportion for Food Intake Measuring

  • Kim, Do-Hyeon;Kim, Yoon;Han, Yu-Ri
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.57-63
    • /
    • 2017
  • In the paper, we propose a new reliable technique for measuring food intake based on image automatically without user intervention. First, food and bowl image before and after meal is obtained by user. The food and the bowl are divided into each region by the K-means clustering, Otsu algorithm, Morphology, etc. And the volume of food is measured by a proportional expression based on the information of the container such as it's entrance diameter, depth, and bottom diameter. Finally, our method calculates the volume of the consumed food by the difference between before and after meal. The proposed technique has higher accuracy than existing method for measuring food intake automatically. The experiment result shows that the average error rate is up to 7% for three types of containers. Computer simulation results indicate that the proposed algorithm is a convenient and accurate method of measuring the food intake.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.