• Title/Summary/Keyword: sediment depth

Search Result 580, Processing Time 0.037 seconds

Community Structure of Macrobenthic Assemblages around the Wolseong Nuclear Power Plant, East Sea of Korea (월성 원자력발전소 주변해역에 서식하는 대형저서동물의 군집구조)

  • Seo, In-Soo;Moon, Hyung-Tae;Choi, Byoung-Mi;Kim, Mi-Hyang;Kim, Dae-Ik;Yun, Jae-Seong;Byun, Ju-Young;Choi, Hue-Chang;Son, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.341-352
    • /
    • 2009
  • This study was carried out to investigated community structure of macrobenthic assemblages around the Wolseong Nuclear Power Plant, East Sea of Korea and seasonal sampling was performed from October 2007 to July 2008. A total of 163 macrobenthic fauna were collected. The overall average macrobenthos density and biomass were 1,005 individuals $m^{-2}$ and $21.81\;gWWt\;m^{-2}$, respectively. Based on the LeBris (1988) index, there were 10 dominant species accounting for approximately 69.00% of total individuals. The major dominant species were the polychaetes Spiophanes bombyx (349 inds. $m^{-2}$), Mediomastus californiensis (82 inds. $m^{-2}$), Sigambra tentaculata (55 inds. $m^{-2}$), Magelona japonica (50 inds. $m^{-2}$), Scoletoma longifolia (33 inds. $m^{-2}$) and the Unidentified amphipod (Amphipoda spp., 72 inds. $m^{-2}$). The conventional multi-variate statistics (cluster analysis and non-metric multi-dimensional scaling) applied to assess spatial variation in macrobenthic assemblages. Cluster analysis and nMDS ordination analysis based on the Bray-Curtis similarity identified 2 major station groups. The major group 1 was associated with sand dominated stations and was characterized by high abundance of the bivalves Mactra chinensis, Siliqua pulchella and the polychaete Protodorvillea egena. On the other hand, major group 2 was connected with mud dominated stations and was numerically dominated by the polychaetes M. californiensis, M. japonica, Sternaspis scutata, S. longifolia and the bivalves Thyasira tokunagai and Theora fragilis. However, macrobenthic community structure were no significant differences between the environmental variables (sediment type and depth) and heated discharge.

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Geochemical Results and Implication of the Organic Matter in the Holocene Sediments from the Hupo Basin (후포분지 홀로세 퇴적물의 유기물에 대한 지화학 분석 결과 및 의미)

  • Kim, Ji-Hoon;Park, Myong-Ho;Kong, Gee-Soo;Han, Hyun-Chul;Cheong, Tae-Jin;Choi, Ji-Young;Kim, Jin-Ho;Kang, Moo-Hee;Lee, Chi-Won;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Geochemical approaches on the two recovered piston cores were performed to understand the characteristics of organic matters and the influence of the sea level variation of the East Sea in the Hupo Basin since the Holocene. The analyzing results on organic components (TOC and TN), and isotopic compositions of organic matters showed the variation to core locations and sampling depths. In core 08HZP-01, their values were gradually changed with depth from 4 mbsf to seafloor. However, rapid variation was observed at the boundary of 4.71 mbsf (meter below seafloor) in core 08HZP-03. Based on TOC/TN, $\delta^{13}C_{org}$ and $\delta^{15}N_{org}$, the origin of organic matters in the Hupo Basin can be divided into three groups; 1) predominant marine algae, 2) $C_3$ land plant, and 3) mixture of $C_3$ land plant and marine/freshwater algae. It is likely that the vertical and spatial variations of organic and isotopic compositions reflect the shifts in sedimentary environment (including sediment transportation) by ocean currents and sea-level changes and others during the Holocene period.

Geophysical and Geological Investigation for Selecting a Dinosaur Museum Site in the Dinosaur Egg Fossil Area, Gojeong-ri, Hwasung, Gyeonggi Province (경기도 화성 고정리 공룡알 화석지 공룡생태박물관 부지선정을 위한 지구물리 및 지질조사)

  • Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.357-363
    • /
    • 2010
  • In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.

Phosphorous Removal in a Free Water Surface Wetland Constructed on the Gwangju Stream Floodplain (광주천 고수부지에 조성한 자유수면인공습지의 인 제거)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • Removal rates of $PO_4-P$ and TP in a free water surface wetland system were investigated. The system was established in 2008 on a floodplain in the middle reach of the Gwangju Stream flowing through Gwangju City. Its dimensions were 46 meters in length and 5 meters in width. Two year old Typha angustifloria L. growing in pots were planted on half of the area and Zizania latifolia Turcz on the other half in 2008. Stream water was funneled into the wetlands by gravity flow, and its effluent was discharged back into the stream. The influent volume was controlled by valves and water depth was adjusted by wires. Volume and water quality of inflow and outflow were analyzed from January to December in 2010. Inflow into the system averaged approximately $710m^3/day$ and hydraulic residence time was about 1.5 hours. Average influent and effluent $PO_4-P$ concentration were 0.144 and 0.103mg/L, respectively, and $PO_4-P$ abatement amounted to 28.6%. Influent and effluent TP concentration averaged 0.333 and 0.262mg/L, respectively, and TP retention reached to 20.7%.$PO_4-P$ removal rate(%) during plant growing season(31.448) was significantly high(p<0.001) when compared with that during plant non-growing season(25.829). TP abatement rate(%) during plant growing season(27.230) was also significantly high(p<0.001) when compared with that of the non-growing season(14.856). Major phosphorous removals in the system resulted from adsorption of phosphorous in the litter-soil layers; sedimentation of particulate phosphorous and Ca, Al, Fe bounded phosphates; and absorption of phosphorous by emergent plants. The adsorption and sedimentation occurred throughout the year, however, the absorption took place during plant growing season. This resulted in higher removals of $PO_4-P$ and TP during plant growing season.

Temporal and Spatial Variability of Phytoplankton Communities in the Nakdong River Estuary and Coastal Area, 2011-2012 (2011-2012년 낙동강 하구 및 연안역에서 식물플랑크톤 군집의 시·공간적 변화)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.214-226
    • /
    • 2013
  • To understand the changing patterns in phytoplankton communities, we conducted 12 surveys along the Nakdong River, its estuary, and adjacent coastal areas between January 2011 and October 2012 (during the period of barrage construction and sediment dredging). Monthly precipitation ranged from 0 to 502 mm during the survey period, and salinity ranged between 0.1 psu and 0.3 psu in the Nakdong River, regardless of the depth, indicating no seawater influence, while salinity showed large seasonal fluctuations in the estuarine and coastal station, ranging from 0.1 psu to 34.8 psu. A total of 402 phytoplankton species were identified, 178 species from the river and 331 species from the estuary and coastal areas. Phytoplankton standing crop increased in 2012 compared to that in 2011, and was found to be highest in the river, followed by the estuary and coastal areas. Among the top 20 species in frequency of occurrence and dominance, Stephanodiscus spp., Aulacoseira granulata, and Aulacoseira granulata var. angustissima and Pseudo-nitzschia spp. were important species along the river-estuary-coastal areas. Diatoms were the major taxonomic group inhabiting the Nakdong river-estuary-coastal areas. A comparison of seasonal dominant phytoplankton species revealed a slight decrease over the years, from 13 species in 2011 to 10 species in 2012. However, no significant difference was found in the diversity of phytoplankton species between the two survey years, although lightly greater diversity was observed in the coastal areas than in the river and estuary. Cluster analysis with community composition data revealed that the community structure varied significantly in 2011 depending on the time of survey, while in 2012, it hardly showed any variation and was simpler. An increase in the phytoplankton standing crop, fewer dominant species, and simpler community structure in 2012 compared to those in 2011 are probably due to the rapid environmental changes along the Nakdong River. To investigate these ecological relationships, it is necessary to conduct further studies focusing on integrated analyses of biocenosis, including phytoplankton with respect to the changes in nutrient distribution, variation of freshwater discharge, and effect area of freshwater in the Nakdong estuary and adjacent coastal areas.

Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa (남세균 제어를 위한 동물플랑크톤(Daphnia magna)과 패류(Unio douglasiae)의 단독 및 혼합적용)

  • Kim, Nan-Young;Park, Myung-Hwan;Hwang, Su-Ok;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Single - and combined effects of a domestic freshwater bivalve Unio douglasiae (7.6~8.6 cm in shell length) and zooplankton Daphnia magna (1~2 mm in body size) were examined to understand whether they inhibit the growth of harmful cyanobacterial bloom (i.e. Microcystis aeruginosa) in a eutrophic lake. The experiments were triplicated with twelve glass aquaria (40 L in volume); three aquaria without mussel and zooplankton, served as a control, three zooplankton aquaria (Z, density=40 indiv. $L^{-1}$), three mussel aquaria (M, density=0.5 indiv. $L^{-1}$), and three mussel plus zooplankton aquarium (ZM, density=40 indiv.Z $L^{-1}$ plus 0.5 indiv.M/L), respectively. Algal growth inhibition (%) calculated as a difference in the concentration of chlorophyll-a (Chl-a) before and after treatment. Chl-a in all aquaria decreased with the time, while a greatest algal inhibition was seen in the ZM aquaria. After 24 hrs of incubation, Chl-a concentration at the mid-depth (ca. 15 cm) in ZM aquaria reduced by 90.8% of the control, while 63.2% and 79.8% in Z and M aquaria, respectively. Interestingly, during the same period, the surface Chl-a was diminished by 51.9% and 65.4% relative to the control in Z and ZM aquaria, while 27.4% of initial concentration decreased in M aquarium, respectively. These results suggest that 1) this domestic freshwater filter-feeding bivalve plays a significant role in the control of cyanobacterial bloom (M. aeruginosa), and 2) the combination with zooplankton and mussel has a synergistic effect to diminish them, compared to the single treatment of zooplankton and mussel.

Earthquake impacts on hydrology: a case study from the Canterbury, New Zealand earthquakes of 2010 and 2011

  • Davie, Tim;Smith, Jeff;Scott, David;Ezzy, Tim;Cox, Simon;Rutter, Helen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.8-9
    • /
    • 2011
  • On 4 September 2010 an earthquake of magnitude 7.1 on the Richter scale occurred on the Canterbury Plains in the South Island of New Zealand. The Canterbury Plains are an area of extensive groundwater and spring fed surface water systems. Since the September earthquake there have been several thousand aftershocks (Fig. 1), the largest being a 6.3 magnitude quake which occurred close to the centre of Christchurch on 22February 2011. This second quake caused extensive damage to the city of Christchurch including the deaths of 189 people. Both of these quakes had marked hydrological impacts. Water is a vital natural resource for Canterburywith groundwater being extracted for potable supply and both ground and surface water being used extensively for agricultural and horticultural irrigation.The groundwater is of very high quality so that the city of Christchurch (population approx. 400,000) supplies untreated artesian water to the majority of households and businesses. Both earthquakes caused immediate hydrological effects, the most dramatic of which was the liquefaction of sediments and the release of shallow groundwater containing a fine grey silt-sand material. The liquefaction that occurred fitted within the empirical relationship between distance from epicentre and magnitude of quake described by Montgomery et al. (2003). . It appears that liquefaction resulted in development of discontinuities in confining layers. In some cases these appear to have been maintained by artesian pressure and continuing flow, and the springs are continuing to flow even now. In spring-fed streams there was an increase in flow that lasted for several days and in some cases flows remained high for several months afterwards although this could be linked to a very wet winter prior to the September earthquake. Analysis of the slope of baseflow recession for a spring-fed stream before and after the September earthquake shows no change, indicating no substantial change in the aquifer structure that feeds this stream.A complicating factor for consideration of river flows was that in some places the liquefaction of shallow sediments led to lateral spreading of river banks. The lateral spread lessened the channel cross section so water levels rose although the flow might not have risen accordingly. Groundwater level peaks moved both up and down, depending on the location of wells. Groundwater level changes for the two earthquakes were strongly related to the proximity to the epicentre. The February 2011 earthquake resulted in significantly larger groundwater level changes in eastern Christchurch than occurred in September 2010. In a well of similar distance from both epicentres the two events resulted in a similar sized increase in water level but the slightly slower rate of increase and the markedly slower recession recorded in the February event suggests that the well may have been partially blocked by sediment flowing into the well at depth. The effects of the February earthquake were more localised and in the area to the west of Christchurch it was the earlier earthquake that had greater impact. Many of the recorded responses have been compromised, or complicated, by damage or clogging and further inspections will need to be carried out to allow a more definitive interpretation. Nevertheless, it is reasonable to provisionally conclude that there is no clear evidence of significant change in aquifer pressures or properties. The different response of groundwater to earthquakes across the Canterbury Plains is the subject of a new research project about to start that uses the information to improve groundwater characterisation for the region. Montgomery D.R., Greenberg H.M., Smith D.T. (2003) Stream flow response to the Nisqually earthquake. Earth & Planetary Science Letters 209 19-28.

  • PDF

Hydrothermal Evolution for the Inseong Au-Ag Deposit in the Hwanggangri Metallogenic Region, Korea (황강리 광화대 인성 금-은 광상의 광화 유체 진화)

  • Cho, Hye Jeong;Seo, Jung Hun;Lee, Tong Ha;Yoo, Bong Chul;Lee, Hyeonwoo;Lee, Kangeun;Lim, Subin;Hwang, Jangwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.307-323
    • /
    • 2018
  • The Inseong Au-Ag and base metal deposit, located in Chungchengbuk-do, Korea, consists of series of quartz veins filling fissures. The deposit occurs in Hwanggangri meta-sediment formation, a lime pebble-bearing phyllite, in the Okcheon Supergroup. Abundant ore minerals in the deposit are pyrite, arsenopyrite, sphalerite, chalcopyrite and galena. The gangue minerals are quartz, calcite and chlorite. Hydrothermal alteration such as chlorization, silicitication, sericitization and carbonitization can be observed around the quartz veins. 4 vein stages can be distinguished based on its paragenetic sequence, vein structure, alteration features and ore minerals. Microthermometry of the fluid inclusion assemblages occur in the veins are conducted to reconstruct a hydrothermal P-T evolution. Fluid inclusions in clean and barren quartz vein in stage 1 have Th of $270{\sim}342^{\circ}C$ and salinity of 1.7~6.4 (NaCl eqiv.) wt%. Euhedral quartz crystal in stage 2 have Th of $108{\sim}350^{\circ}C$ and salinity of 0.5~7.5 wt%. Barren milky quartz vein in stage 3 have Th of $174{\sim}380^{\circ}C$ and salinity of 0.8~7.5 wt%. Calcite vein in stage 4 have Th of $103{\sim}265^{\circ}C$ and salinity of 0.7~6.4 wt%. Calculated paleodepth about 0.5~1.5 km (hydrostatic pressure) indicate epithermal ore-forming condition. Shallow depth but relatively high-T hydrothermal fluids possibly create a steep geothermal gradient, sufficient for base metal precipitation in the Inseong deposit.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.