DOI QR코드

DOI QR Code

Hydrothermal Evolution for the Inseong Au-Ag Deposit in the Hwanggangri Metallogenic Region, Korea

황강리 광화대 인성 금-은 광상의 광화 유체 진화

  • Cho, Hye Jeong (Department of Energy and Resources Engineering, Inha University) ;
  • Seo, Jung Hun (Department of Energy and Resources Engineering, Inha University) ;
  • Lee, Tong Ha (Department of Energy and Resources Engineering, Inha University) ;
  • Yoo, Bong Chul (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyeonwoo (Incheon Academy of Science and Arts) ;
  • Lee, Kangeun (Incheon Academy of Science and Arts) ;
  • Lim, Subin (Incheon Academy of Science and Arts) ;
  • Hwang, Jangwon (Incheon Academy of Science and Arts)
  • 조혜정 (인하대학교 에너지자원공학과) ;
  • 서정훈 (인하대학교 에너지자원공학과) ;
  • 이동하 (인하대학교 에너지자원공학과) ;
  • 유봉철 (한국지질자원연구원) ;
  • 이현우 (인천과학예술영재학교) ;
  • 이강은 (인천과학예술영재학교) ;
  • 임수빈 (인천과학예술영재학교) ;
  • 황장원 (인천과학예술영재학교)
  • Received : 2018.12.06
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

The Inseong Au-Ag and base metal deposit, located in Chungchengbuk-do, Korea, consists of series of quartz veins filling fissures. The deposit occurs in Hwanggangri meta-sediment formation, a lime pebble-bearing phyllite, in the Okcheon Supergroup. Abundant ore minerals in the deposit are pyrite, arsenopyrite, sphalerite, chalcopyrite and galena. The gangue minerals are quartz, calcite and chlorite. Hydrothermal alteration such as chlorization, silicitication, sericitization and carbonitization can be observed around the quartz veins. 4 vein stages can be distinguished based on its paragenetic sequence, vein structure, alteration features and ore minerals. Microthermometry of the fluid inclusion assemblages occur in the veins are conducted to reconstruct a hydrothermal P-T evolution. Fluid inclusions in clean and barren quartz vein in stage 1 have Th of $270{\sim}342^{\circ}C$ and salinity of 1.7~6.4 (NaCl eqiv.) wt%. Euhedral quartz crystal in stage 2 have Th of $108{\sim}350^{\circ}C$ and salinity of 0.5~7.5 wt%. Barren milky quartz vein in stage 3 have Th of $174{\sim}380^{\circ}C$ and salinity of 0.8~7.5 wt%. Calcite vein in stage 4 have Th of $103{\sim}265^{\circ}C$ and salinity of 0.7~6.4 wt%. Calculated paleodepth about 0.5~1.5 km (hydrostatic pressure) indicate epithermal ore-forming condition. Shallow depth but relatively high-T hydrothermal fluids possibly create a steep geothermal gradient, sufficient for base metal precipitation in the Inseong deposit.

인성광상은 옥천누층군의 황강리층 내에 발달한 열극 충진 함 금-은 및 베이스 메탈 석영맥 광상이다. 광상 생성에 기여한 맥들은 녹니석화, 규화작용, 견운모화 그리고 탄산염화 작용 등 다양한 변질양상 및 광석 광물에 따라 네 시기로 구분된다. 첫 번째 시기(stage 1)에는 자형의 황철석 및 유비철석과 함께 투명하고 경제적 광석이 나타나지 않는(barren) 석영맥이 나타난다. 두 번째 시기(stage 2)에는 자형 석영 결정의 석영맥이 형성되며, 유비철석, 섬아연석, 황동석, 황철석 및 방연석이 나타난다. 세 번째 시기(stage 3)에는 유백색 석영맥과 소량의 섬아연석이 나타난다. 네 번째 시기(stage 4)에는 자형의 석영 결정을 포획한 방해석맥이 나타나며, 모암 내 탄산염 변질과 함께 소량의 유비철석, 황철석, 방연석, 섬아연석 및 황동석이 산출된다. 각 시기별 유체 포유물은 주로 염 결정이 포함되지 않은 다양한 밀도의 수용액 유체 포유물이 대부분이다. 각 시기의 균질화 온도(Th: $^{\circ}C$)와 염 농도(NaCl equivalent wt%)는 다음과 같다; 시기 1 ($270{\sim}342^{\circ}C$ 그리고 1.7~6.4 wt%), 시기 2 ($108{\sim}351^{\circ}C$ 그리고 0.5~7.5 wt%), 시기 3 ($174{\sim}380^{\circ}C$ 그리고 0.8~7.5 wt%) 그리고 시기 4 ($103{\sim}265^{\circ}C$ 그리고 0.7~6.4 wt%). 넓은 범위의 균질화 온도와 염농도는 광화 유체가 천수의 혼입에 의한 냉각과 희석이 있었을 가능성을 지시한다. 0.5~1.5 km의 인성광상의 계산된 고심도는 천열수 환경을 지시한다.

Keywords

References

  1. Bodnar, R.J., Lecumberri-Sanchez, P.M.D., and Steele-MacInnis, M. (2014) Fluid inclusions in hydrothermal ore deposits, Treatise on Geochemistry (2nd Edition), 119-141.
  2. Bodnar, R.J. and Sterner, S. M. (1987) Synthetic fluid inclusions. In Hydrothermal Experimental Techniques, J. Wiley & Sons, New York, 423-457.
  3. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for $H_2O$-NaClfluidinclusions: Fluid inclusion in minerals: methods and applications, 117-130.
  4. Cheong, C.S., Jeong, G.Y., Kim, H.C., Choi, M.S., Lee, S.H., and Cho, M.S. (2003) Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication, Chemical Geology, 193, 81-92. https://doi.org/10.1016/S0009-2541(02)00227-9
  5. Cho, M.S. and Kim, H.C. (2005) Metamorphic evolution of the Ogcheon Belt, Korea: A review and new age constraints, International Geology Review, 47, 41-57. https://doi.org/10.2747/0020-6814.47.1.41
  6. Cho, M.S. (2006) A review of Okcheon, Songrim and Daebo orogeny, 2006 The Geology Society of Korea Fall Meeting (Abstracts), Korea, Seoul, October 26, 7.
  7. Choi, S.G., Park, N. Y., and Hong, S.W. (1988) Mineralogy of gold-silver deposits in Chungcheong province, Journal of the Korean Institute of Mining Geology, 21, 223-234.
  8. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock forming minerals (2nd edition), John Wiley & Sons, New York, 696p.
  9. Driesner, T. and Heinrich, C.A. (2007) The system $H_2O$-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to $1,000^{\circ}C$, 0 to 5,000 bar, and 0 to 1 $X_{NaCl}$, Geochimica et Cosmochimica Acta, 71, 4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
  10. Kang, J.H., Lee, D.S., Noh, S.Y., Jeong, J.W., and Koh, S.M. (2017) Geology and constituent rocks of the Chungju-Goesan area in the northwestern part of Ogcheon metamorphic zone, Korea: Considering on the history of igneous activities accompanying formation and evolution processes, The Geology Society of Korea, 53, 51-77. https://doi.org/10.14770/jgsk.2017.53.1.51
  11. Kim, J.H. (2017) Footprints of structural geology in Korea: Review, The Geological Society of Korea, 53, 5-33. https://doi.org/10.14770/jgsk.2017.53.1.5
  12. Kim, K.W. and Lee, H.G. (1965) A geological map of Chungju area, Korea Institute of Geoscience and Mineral Resources, Seoul, 35, 7p.
  13. Kim, K.H. and Min, K.D. (1996) Geochemical and stable isotopic studies of the matrix of pebble bearing phyllitic rocks and carbonate rocks from the Suanbo and Susanri District in the Okchon geosynclinal zone, Economic and Environmental Geology, 29, 25-33.
  14. Kim, O.J. (1970) Gold-silver metallogenic province in south Korea, Journal of the Korean Institute of Mining Geology, 3, 163-167.
  15. Kim, S.W., Oh, C.W., Hyodo, H., Itaya, T., and Liou, J.G. (2005) Metamorphic evolution of the southwest Okcheon Metamorphic Belt in South Korea and its regional tectonic implications. International Geology Review, 47, 344-370. https://doi.org/10.2747/0020-6814.47.4.344
  16. Kim, W.J. (1986) Metallogeny on gold-silver in South Korea, Journal of the Korean Institute of Mining Geology, 19, 243-264.
  17. Korea Institute of Geoscience and Mineral Resources (1982) The Au deposits in Korean Peninsula, Seoul, 606p.
  18. Lee, D.S., Kim, Y.J., and Chai I.C. (1977) A study on the structure of Ogcheon Group in Goesan Area, Journal of the Korean Institute of Mining Geology, 10, 177-184.
  19. Lee, H.K. and Yoo, B.C. (2000) Chronology and P-V-T-X studies with fluid inclusions of Ag-Au mesothermal deposit of quartz vein in Chungcheong Province, Cheongyang Gubong deposit, 2000 Economic and Environmental Geology Spring Meeting, Korea, April 1, 314-316.
  20. Lee, H.K., Moon, H.S., and Oh, M.S. (2007) Economic Mineral Deposits in Korea, ACANET, Seoul, Korea, 277-281p.
  21. Lee, H.K. and Moon, H.S. (1989) Ore minerals and the physicochemical environments of the Inseong gold-silver deposits, Republic of Korea, Journal of the Korean Institute of Mining Geology, 22, 237-252.
  22. Lee, J.H., Lee, H.Y., Yu, K.M., and Lee, B.S. (1989) Discovery of microfossils from limestone pebbles of the Hwanggangri Formation and their stratagraphic, Geology of Society of Korea, 25, 1-15.
  23. Lee, M.S. and Park, P.S. (1965) A geological map of Hwanggangri Area, Korea Institute of Geoscience and Mineral Resources, Seoul, 49, 9p.
  24. Lim, S.B. (2007) Geological ages and stratigraphy of the metasedimentary strata in Hoenam-Miwon area, NW Okcheon belt, The Geological Society of Korea,43, 125-150.
  25. Oh, C.W., Kim, S.W., Ryu, I.C., Okada, T., Hyodo, H., and Itaya, T. (2004) Tectono metamorphic evolution of the Okcheon Metamorphic Belt, South Korea: Tectonic implications in East Asia. The Island Arc, 13, 387-402. https://doi.org/10.1111/j.1440-1738.2004.00433.x
  26. Richards, J. and Kerrich, R. (2007) Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic and environmental geology, 102, 537-576. https://doi.org/10.2113/gsecongeo.102.4.537
  27. Roedder, E. (1984) Fluid inclusions, Mineralogy, Mineralogical Society of America, Vol. 12, 644.
  28. Sillitoe, R.H. and Hedenquist, J.W. (2003) Linkages between volcanotectonic setting, ore-fluid compositions, and epithermal precious metal deposits, Society of Economic Geologists Special Publication, 10, 315-343.
  29. Shin, B.W. (1974) Geotectonic movements and metal ore deposits in South Korea, Journal of the Korean Institute of Mining Geology 7, 1-21.
  30. Shin, D.B., Gwon, S.H., and Kim, Y.S. (2015) Characteristics of lode development and structural interpretation for the high Au contents within the fault gouge zones in Jinsan Au Mine, Chungcheongnam-do, Economic and environmental Geology, 48, 103-114. https://doi.org/10.9719/EEG.2015.48.2.103
  31. Son, C.M. (1971) A significance of ore deposit distribution in South Korea, Journal of the Korean Institute of Mining Geology, 4, 91-102.
  32. Suzuki, K., Dunkley, D., Adachi, M., and Chwae, U. (2006) Discovery of a c. 370 Ma granitic gneiss clast from the Hwanggangri pebble-bearing phyllite in the Okcheon metamorphic belt, Korea. Gondwana Research, 9, 85-94. https://doi.org/10.1016/j.gr.2005.06.004
  33. Yoo, B.C. (2013) Genesis of the Ogcheon gold-silver deposit in Republic of Korea: ore minerals, fluid inclusion and stable isotope studies, Economic and Environmental Geology, 46, 153-163. https://doi.org/10.9719/EEG.2013.46.2.153

Cited by

  1. 삼덕 Mo 광상에서 산출되는 백색운모 및 화학조성 vol.32, pp.3, 2019, https://doi.org/10.9727/jmsk.2019.32.3.223