• Title/Summary/Keyword: sediment depth

Search Result 580, Processing Time 0.029 seconds

Estimation of the thickness of floating silty clay sediment using dual frequency single beam echo sound system (이중 주파수 에코 사운드 시스템을 이용한 부니층 두께 조사)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.219-231
    • /
    • 2002
  • Single beam echo sounding was used to delineate bathymetry sea bottom in the area of hydrography and marine navigation. This research was aimed at measuring the thickness of floating silty clay sediment with dual frequencies echo sounding system. There occur discrepancies in penetrating depth through sea beds between high frequency(200 KHz) and low(33 KHz) frequency. RI density logging was employed to characterize the floating silty clay sediment of Guangyang bay, which was chosen to investigate the proposed site for reclamation field. The volume of floating silty clay sediment was used to design by estimating size of reclamation site. The estimation strategies developed in this study will be readily applicable to measure the Pattern of sedimentation via regular hydrographic survey in the future.

  • PDF

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

The Characteristics of Sediment and Organic Content in the Dalpo Wetland (달포늪의 퇴적물과 유기물함량 특성 연구)

  • Kang, Dong Hwan;Kim, Sung Soo;Jung, Hwee Je;Kwon, Byung Hyuk;Kim, Il Kyu
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • In this study, the correlation of organic content with particle size and type of sediment was found out.Particle size, stratigraphic section and organic content of sediments sampled from Dalpo wetland was analyzed. Dalpo wetland consists of three wetlands, and the area of Dalpo wetland is about $31,295m^2$. The particle size analyses for sampled sediments of 7 points (3 points in wetland A, 3 points in wetland B and 1 point in wetland C) were tested. As results of the particle size analyses, the sediment particle size becomes larger as to the edge of the wetland. It is revealed in order of wetland A > wetland C > wetland B. Borehole surveys with horizontal distance in the major and minor axes of wetland A, the major and minor axes of wetland B and the major axis of wetland C were accomplished. Clayey peat deposit is distributed at 10~90 cm depth below ground surface in the major axis of wetland A. The clayey peat deposit was the most thick at the center of wetland A that horizontal distance is 100 m. As the depth below ground surface of clayey peat deposit is less than 27 cm in the wetland B, we can infer that the life for the wetland B is being finished. Sediment composition of wetland C is simple because wetland C is small scale, and clayey peat deposit is distributed at 10~34 cm depth below ground surface. Sediment sampled by borehole survey in the Dalpo wetland was cut at interval of 10 cm, then organic content was analyzed. Organic content of wetland A sediment showed more than 40% until 70 cm depth below ground surface, also sediment of wetland B is similar to wetland A until 10 cm depth below ground surface, but is showed within 20 % above 30 cm depth below ground surface. Organic content of wetland B is showed the lowest as organic content near the ground surface is about 40%. All of the three wetlands, organic content is showed higher at clayey peat deposit near to ground surface. This is caused by finer particles of the clayey peat deposit, also organic materials were supplied from dead vegetation. Organic content of the Dalpo wetland showed in order of wetland A > wetland C > wetland B. This result is caused by thickness of clayey peat deposit in sediment. Through this study, it was verified that organic content of the Dalpo wetland sediment was dominated by particle size of sediment and vegetation of the upper part.

  • PDF

Determination of Heavy Metals for Sediment Proximated to Water in Lake(II) (호소내 퇴적물의 수질오염물질 분석(II) - 중금속 -)

  • Park, Sun-Ku;Kim, Sung-Soo;Ko, Oh-Suk
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • The study was carried out to analyze the pollutants, Fe, Cu, Cr, Zn, Cd for 3 sediments of 5 sites collected from lake in K river basin. 5cm sediment, which is nearly proximated to water from sediment of depth 30cm, showed higher Fe, Cu, Cr, Zn, Cd data than another 5-10cm and 10cm sediment, which is separated from sediment of depth 30cm. Also, 5cm sediment nearly proximated to water showed the following data: Fe, 34.9-39.8mg/L, Cu, 34.5-44.8mg/L, Cr, 68.0-79.2mg/L, Zn, 147.4-126.0mg/L, Cd, 2.2-1.0mg/L, respectively. From this results, we know the fact that the pollution degree of sediment has an effect on the water quality in like and stream.

  • PDF

Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea (의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Im, Jong Kwon;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

Analysis of characteristics of sediment transport in sewers by densimetric Froude number (밀도프루드수에 의한 하수관로 침전물 이송 특성 분석)

  • Park, Kyoohong;Lee, Taehoon;Yu, Soonyu;Kang, Byongjun;Hyun, Kirim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Even though sewers have been conventionally designed to prevent from sediment deposition using a specified minimum velocity or shear stress at a particular depth of flow or with a particular frequency of occurrence, it was appreciated that these methods do not consider the characteristics and concentration of the sediment and the specific hydraulic conditions of the sewer with sediment. In this study, a densimetric Froude number formula was suggested considering particle diameter and volumetric concentration of the sediment as well as flow depth and flowrate, based on several domestic field inspections, which was compared with other formulas proposed by previous investigators. When the sediment concentration was not considered, the calibration coefficient of 0.125-1.5 to the densimetric Froude numbers of this study was needed to obtain the similar ones with previous investigators'. For the densimetric Froude number formula obtained with consideration of sediment concentration, the exponent value of term Cv was almost the same as that of previous results and that of d50/Rh was similar for Fr < 2.2.

Pollution Characteristics and Application of River Sediment of the Western Nakdong River (서낙동강의 오염 특성과 오염 퇴적물의 활용 방안)

  • 박흥재;유수진;이봉헌;정징운;안호기;박원우
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • The pollution characteristics of water quality analysis and the heavy metal analysis of river sediment in the Western Nakdong river, and then a commercial tile using the polluted sediment was produced. The analytical results of the riverbed structure and the depth distribution in the Western Nakdong river were that Macdo Stream(site 2) was the deepest(13 ft). The analytical result of water quality showed that BOD was the highest in the Hogei Stream(site 6); COD, Syanduengchi Island(site 1);SS, Macdo Stream(site 2);T-N, Suanduengchi Island(site 1);T-P, Macdo Stream(site 2). Therefore the deeper the site was the higher the pollution concentration was. The result of heavy metal analysis of the river sediment was that Pb and Cr were the highest in Kangdong Bridge(site 9); Cd, Macdo Stream(site 2), so the deeper the site was the higher the pollution concentration was. The production of tile using the mixure of the polluted sediment and the raw material was successful, so the reuse of polluted sediment was possible.

  • PDF

Physical and Chemical Characteristics of Sediments at Bam Islands in Seoul, Korea

  • Han, Mie-Hie;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.389-398
    • /
    • 2006
  • To examine sediment characteristics and find anthropogenic effects on riverine wetland ecosystems, paleoecological study was carried out at Bam islands in Seoul. Three hundred cm deep sediment cores were retrieved and dated with the lamination analysis method until 36 cm depth (1986). Sediments were divided into three zones based on the depth profiles of physico-chemical variables: below 160 cm depth (before 1968), between 160 and 40cm depths and above 40cm depth (after 1986). Physico-chemical characteristics were very variable between 160 and 40cm depths and this indicates unstable sedimentation environment. Even though heavy metal concentrations were relatively low, Cd and As contents have increased continuously. Dry mass accumulation rates during $1968{\sim}1986\;and\;1987{\sim}2003$ were 140 and $21\;kg\;m^{-2}\;yr^{-1}$, respectively. This was related to flooding intensity and duration. Bulk density, water content, loss on ignition, N, C, C/N ratio were very similar to other river delta but Ca, Na and K contents were 2 to 4 times higher than others. Heavy metal contents except Pb were lower or similar to those in other studied marshes in Korea. Heavy metal and Mg contents were correlated with each other and this suggests that the source of heavy metals be parent rock. From $^{13}C$ dating dates of organic materials in sediment, it is suggested that organic matter originated from the watershed and flooding intensity in the watershed might be responsible for the source of sediments. This study provides reference data for the comparison of sediment characteristics at islands in river and for the management of Bam islands.

Distribution of ATP in the Deep-Sea Sediment in the KODOS 97-2 Area, Northeast Equatorial Pacific Ocean (북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물 내의 ATP 분포양상)

  • Hyun, Jung-Ho;Kim, Kyeong-Hong;Chi, Sang-Bum;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.142-148
    • /
    • 1998
  • Environmental baseline information is necessary in order to assess the potential environmental impact of future manganese-nodule mining on the deep-seabed ecosystem. Total ATP (T-ATP), dissolved ATP (D-ATP) and particulate ATP (P-ATP) were measured to estimate total microbial biomass and to elucidate their vertical distribution patterns in the seabed of KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific Ocean. Within the upper 6 cm depth of sediment, the concentrations of T-ATP, D-ATP and P-ATP ranged from 4.4 to 40.6, from 0.6 to 16.1, and from 3.0 to 29.2 ng/g dry sediment, respectively. Approximately 84% of T-ATP, 81% of D-ATP, and 74% of P-ATP were present within the topmost 2 cm depth of sediment, and the distributions of ATP were well correlated with water content in the sediment. These results indicate that the distribution of total microbial biomass was largely determined by the supply of organic matter from surface water column. Fine-scale vertical variations of ATP were detected within 1-cm thick veneer of the sediment samples collected by multiple corer, while no apparent vertical changes were observed in the box-cored samples. It is evident that the box-core samples were disturbed extensively during sampling, which suggests that the multiple corer is a more appropriate sampling gear for measuring fine-scale vertical distribution pattern of ATP within thin sediment veneer. Overall results suggest that the concentrations of ATP, given their clear changes in vertical distribution pattern within 6 cm depth of sediment, are a suitable environmental baseline parameter in evaluating the variations of benthic microbial biomass that are likely to be caused by deep-seabed mining operation.

  • PDF

Comparison of the effects of physico-chemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of south-west Korea (한국 남서부 갯벌의 저서성 미세조류의 대상분포와 수직분포에 미치는 이화학적 요인의 효과에 관한 비교)

  • 이학영
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.529-535
    • /
    • 2002
  • Efffcts of physico-chemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of Youngkwang and Canaiin, Korea, were studied. Concentrations of nutrients were low throughout the study period. A 38 species of benthic microaigae was identified. Most of the algae were pennate diatoms with small size. Cell numbers at silty sediments were higher than sandy sediments, and showed high patchy distribution. Zonal distributions of benthic microalgae showed higher variation from silty sediment than sandy sediments. Benthic microalgae showed vertical migration within the upper few mm of sediment with periodicity closely related to tidal cycles. Maximum cells were observed from 0 mm depth both sandy and silty sediments. Cells of benthic microalgae in the 1 - 2 mm depth decreased after desiccation of sediments. The variation of cells was higher at sandy sediments than silty sediments. Cell numbers of benthic microalgae showed no positive relationships with pH and nutrinets except NH$_4$-N.