• Title/Summary/Keyword: secure solution

Search Result 355, Processing Time 0.032 seconds

Searchable Encrypted String for Query Support on Different Encrypted Data Types

  • Azizi, Shahrzad;Mohammadpur, Davud
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4198-4213
    • /
    • 2020
  • Data encryption, particularly application-level data encryption, is a common solution to protect data confidentiality and deal with security threats. Application-level encryption is a process in which data is encrypted before being sent to the database. However, cryptography transforms data and makes the query difficult to execute. Various studies have been carried out to find ways in order to implement a searchable encrypted database. In the current paper, we provide a new encrypting method and querying on encrypted data (ZSDB) for different data types. It is worth mentioning that the proposed method is based on secret sharing. ZSDB provides data confidentiality by dividing sensitive data into two parts and using the additional server as Dictionary Server. In addition, it supports required operations on various types of data, especially LIKE operator functioning on string data type. ZSDB dedicates the largest volume of execution tasks on queries to the server. Therefore, the data owner only needs to encrypt and decrypt data.

Securing Mobile Ad Hoc Networks Using Enhanced Identity-Based Cryptography

  • Mehr, Kamal Adli;Niya, Javad Musevi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.512-522
    • /
    • 2015
  • Recent developments in identity-based cryptography (IBC) have provided new solutions to problems related to the security of mobile ad hoc networks (MANETs). Although many proposals to solve problems related to the security of MANETs are suggested by the research community, there is no one solution that fits all. The interdependency cycle between secure routing and security services makes the use of IBC in MANETs very challenging. In this paper, two novel methods are proposed to eliminate the need for this cycle. One of these methods utilizes a key pool to secure routes for the distribution of cryptographic materials, while the other adopts a pairing-based key agreement method. Furthermore, our proposed methods utilize threshold cryptography for shared secret and private key generation to eliminate the "single point of failure" and distribute cryptographic services among network nodes. These characteristics guarantee high levels of availability and scalability for the proposed methods. To illustrate the effectiveness and capabilities of the proposed methods, they are simulated and compared against the performance of existing methods.

Cognitive Radio Anti-Jamming Scheme for Security Provisioning IoT Communications

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4177-4190
    • /
    • 2015
  • Current research on Internet of Things (IoT) has primarily addressed the means to enhancing smart resource allocation, automatic network operation, and secure service provisioning. In particular, providing satisfactory security service in IoT systems is indispensable to its mission critical applications. However, limited resources prevent full security coverage at all times. Therefore, these limited resources must be deployed intelligently by considering differences in priorities of targets that require security coverage. In this study, we have developed a new application of Cognitive Radio (CR) technology for IoT systems and provide an appropriate security solution that will enable IoT to be more affordable and applicable than it is currently. To resolve the security-related resource allocation problem, game theory is a suitable and effective tool. Based on the Blotto game model, we propose a new strategic power allocation scheme to ensure secure CR communications. A simulation shows that our proposed scheme can effectively respond to current system conditions and perform more effectively than other existing schemes in dynamically changeable IoT environments.

Low area field-programmable gate array implementation of PRESENT image encryption with key rotation and substitution

  • Parikibandla, Srikanth;Alluri, Sreenivas
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1113-1129
    • /
    • 2021
  • Lightweight ciphers are increasingly employed in cryptography because of the high demand for secure data transmission in wireless sensor network, embedded devices, and Internet of Things. The PRESENT algorithm as an ultralightweight block cipher provides better solution for secure hardware cryptography with low power consumption and minimum resource. This study generates the key using key rotation and substitution method, which contains key rotation, key switching, and binary-coded decimal-based key generation used in image encryption. The key rotation and substitution-based PRESENT architecture is proposed to increase security level for data stream and randomness in cipher through providing high resistance to attacks. Lookup table is used to design the key scheduling module, thus reducing the area of architecture. Field-programmable gate array (FPGA) performances are evaluated for the proposed and conventional methods. In Virtex 6 device, the proposed key rotation and substitution PRESENT architecture occupied 72 lookup tables, 65 flip flops, and 35 slices which are comparably less to the existing architecture.

Centralized Smart Government Architecture based on Trust Manager

  • Ahamad, Shaik Shakeel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.565-569
    • /
    • 2021
  • The rapid growth and development of ICT (Information and Communication Technology) and internet services has boosted the adoption of Mobile Government services all around the globe. There is a huge increase in the adoption of government services during COVID-19 pandemic. Existing Mobile Government (MG) solutions are not trustworthy and secure. This paper provides secure and trustworthy solution for mobile government, proposes a centralized smart governance architecture which is based on trust manager. Our proposed work has Wireless Bridge Certifying Authority (WBCA) and Wireless Public Key Infrastructure (WPKI) thereby ensuring security and privacy. Our proposed work ensures trust with WBCA as WBCA acts as a Trust Manager (TM). Proposed protocol has less computational cost and energy cost

Recent Technology Trends of Free-Space Quantum Key Distribution System and Components (무선 양자암호통신 시스템 및 부품 최신 기술 동향)

  • Youn, C.J.;Ko, H.;Kim, K.J.;Choi, B.S.;Choe, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.94-106
    • /
    • 2018
  • A quantum key distribution (QKD) provides in principle an unconditional secure communication unlike the standard public key cryptography depending on the computational complexity. In particular, free-space QKD can give a secure solution even without a fiber-based infrastructure. In this paper, we investigate an overview of recent research trends in the free-space QKD system, including satellite and handheld moving platforms. In addition, we show the key components for a free-space QKD system such as the integrated components, single photon detectors, and quantum random number generator. We discuss the technical challenges and progress toward a future free- space QKD system and components.

Adaptively Secure Anonymous Identity-based Broadcast Encryption for Data Access Control in Cloud Storage Service

  • Chen, Liqing;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1523-1545
    • /
    • 2019
  • Cloud computing is now a widespread and economical option when data owners need to outsource or share their data. Designing secure and efficient data access control mechanism is one of the most challenging issues in cloud storage service. Anonymous broadcast encryption is a promising solution for its advantages in the respects of computation cost and communication overload. We bring forward an efficient anonymous identity-based broadcast encryption construction combined its application to the data access control mechanism in cloud storage service. The lengths for public parameters, user private key and ciphertext in the proposed scheme are all constant. Compared with the existing schemes, in terms of encrypting and decrypting computation cost, the construction of our scheme is more efficient. Furthermore, the proposed scheme is proved to achieve adaptive security against chosen-ciphertext attack adversaries in the standard model. Therefore, the proposed scheme is feasible for the system of data access control in cloud storage service.

A Study of RDF Security Concerns in Semantic Web

  • Ubaidullah, Ubaidullah;Abbas, Fizza;Hussain, Rasheed;Son, Junggab;Oh, Heekuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.906-909
    • /
    • 2013
  • The Semantic Web is leading us to a world of information sharing by enabling distributed knowledge aggregation and creation. RDF is the foundations of the Semantic Web. For secure Semantic web we need to secure RDF as well. Unauthorized access to an RDF document can change or damage its semantics or manipulate the relations between resources. This article includes the study of RDF security issues and analysis of the existing solutions. After finding limitations of existing solution, a hybrid approach has been proposed.

(An HTTP-Based Application Layer Security Protocol for Wireless Internet Services) (무선 인터넷 서비스를 위한 HTTP 기반의 응용 계층 보안 프로토콜)

  • 이동근;김기조;임경식
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.377-386
    • /
    • 2003
  • In this paper, we present an application layer protocol to support secure wireless Internet services, called Application Layer Security(ALS). The drawbacks of the two traditional approaches to secure wireless applications motivated the development of ALS. One is that in the conventional application-specific security protocol such as Secure HyperText Transfer Protocol(S-HTTP), security mechanism is included in the application itself. This gives a disadvantage that the security services are available only to that particular application. The other is that a separate protocol layer is inserted between the application and transport layers, as in the Secure Sockets Layer(SSL)/Transport Layer Security(TLS). In this case, all channel data are encrypted regardless of the specific application's requirements, resulting in much waste of network resources. To overcome these problems, ALS is proposed to be implemented on top of HTTP so that it is independent of the various transport layer protocols, and provides a common security interface with security applications so that it greatly improves the portability of security applications. In addition, since ALS takes advantages of well-known TLS mechanism, it eliminates the danger of malicious attack and provides applications with various security services such as authentication, confidentiality integrity and digital signature, and partial encryption. We conclude this paper with an example of applying ALS to the solution of end-to-end security in a present commercial wireless protocol stack, Wireless Application Protocol.

Development of a Secure Routing Protocol using Game Theory Model in Mobile Ad Hoc Networks

  • Paramasivan, Balasubramanian;Viju Prakash, Maria Johan;Kaliappan, Madasamy
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In mobile ad-hoc networks (MANETs), nodes are mobile in nature. Collaboration between mobile nodes is more significant in MANETs, which have as their greatest challenges vulnerabilities to various security attacks and an inability to operate securely while preserving its resources and performing secure routing among nodes. Therefore, it is essential to develop an effective secure routing protocol to protect the nodes from anonymous behaviors. Currently, game theory is a tool that analyzes, formulates and solves selfishness issues. It is seldom applied to detect malicious behavior in networks. It deals, instead, with the strategic and rational behavior of each node. In our study,we used the dynamic Bayesian signaling game to analyze the strategy profile for regular and malicious nodes. This game also revealed the best actions of individual strategies for each node. Perfect Bayesian equilibrium (PBE) provides a prominent solution for signaling games to solve incomplete information by combining strategies and payoff of players that constitute equilibrium. Using PBE strategies of nodes are private information of regular and malicious nodes. Regular nodes should be cooperative during routing and update their payoff, while malicious nodes take sophisticated risks by evaluating their risk of being identified to decide when to decline. This approach minimizes the utility of malicious nodes and it motivates better cooperation between nodes by using the reputation system. Regular nodes monitor continuously to evaluate their neighbors using belief updating systems of the Bayes rule.