• Title/Summary/Keyword: sectional analysis

Search Result 2,942, Processing Time 0.025 seconds

Comparative Analysis between Directly Measured Diameter in 2D Angiography and Cross-Sectional Area-Converted Diameter in MR Image (2D 혈관조영술에서 직접 측정한 혈관 직경과 MR 영상에서 단면적 기반 환산 직경의 비교 분석)

  • Ki-Baek Lee;Mi-Hyeon Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.427-433
    • /
    • 2023
  • This study aimed to quantitatively compare the diameters measured directly from the coronal plane or sagittal plane of 2D digital subtraction angiography (DSA) and the cross-sectional area-converted diameters calculated from contrast-enhanced MR (CE-MR) imaging. A retrospective analysis was conducted on 20 patients who underwent both 2D DSA and CE-MR imaging. Firstly, the venous diameters of the superior sagittal sinus (SSS) and transverse sinus (TS) were directly measured from 2D DSA. Subsequently, the axial planes for SSS diameter and the sagittal plane for TS in CE-MR imaging were utilized to calculate cross-sectional area-based converted diameters. The numerical values obtained from 2D DSA and CE-MR imaging were compared pairwise at each location. For SSS, the diameter measured by 2D DSA was 27% larger than the conversion-based diameter from CE-MR imaging (9.8±1.4 mm vs. 7.1±1.3 mm, P<0.05). Similarly, for the right TS, the difference was 16% (8.8±3.2 mm vs. 7.4±2.0 mm, P<0.05), and for the left TS, the difference was 22% (8.4±2.8 mm vs. 6.6±1.3 mm, P<0.05). In conclusion, the diameter measured directly in conventional 2D DSA may be larger than the diameter converted based on the cross-sectional area. Therefore, when selecting the size of the stent, it is crucial to make precise determinations while keeping this fact in mind.

Effects of a relined fiberglass post with conventional and self-adhesive resin cement

  • Wilton Lima dos Santos Junior;Marina Rodrigues Santi;Rodrigo Barros Esteves Lins;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2024
  • Objectives: This study was conducted to evaluate the mechanical properties of relined and non-relined fiberglass posts when cemented to root canal dentin using a conventional dual-cure resin cement or a self-adhesive resin cement. Materials and Methods: Two types of resin cements were utilized: conventional and self-adhesive. Additionally, 2 cementation protocols were employed, involving relined and non-relined fiberglass posts. In total, 72 bovine incisors were cemented and subjected to push-out bond strength testing (n = 10) followed by failure mode analysis. The cross-sectional microhardness (n = 5) was assessed along the root canal, and interface analyses (n = 3) were conducted using scanning electron microscopy (SEM). Data from the push-out bond strength and cross-sectional microhardness tests were analyzed via 3-way analysis of variance and the Bonferroni post-hoc test (α= 0.05). Results: For non-relined fiberglass posts, conventional resin cement exhibited higher pushout bond strength than self-adhesive cement. Relined fiberglass posts yielded comparable results between the resin cements. Type II failure was the most common failure mode for both resin cements, regardless of cementation protocol. The use of relined fiberglass posts improved the cross-sectional microhardness values for both cements. SEM images revealed voids and bubbles in the incisors with non-relined fiberglass posts. Conclusions: Mechanical properties were impacted by the cementation protocol. Relined fiberglass posts presented the highest push-out bond strength and cross-sectional microhardness values, regardless of the resin cement used (conventional dual-cure or self-adhesive). Conversely, for non-relined fiberglass posts, the conventional dual-cure resin cement yielded superior results to the self-adhesive resin cement.

Cone Beam Computed Tomography Analysis of Mandibular Anatomical Variation in a Patient with Facial Asymmetry (안면 비대칭 환자에서 Cone Beam Computed Tomography를 이용한 하악골 해부학적 변이의 분석)

  • Park, Seong-Won;Oh, Sung-Hwan;Lee, Jae-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Purpose: The study was performed to compare patients with anatomical variations in facial asymmetry with patients in the normal range using cone-beam computed tomography (CBCT) and to take the preoperative condition into consideration in the case of a sagittal split ramus osteotomy (SSRO). Methods: The study was conducted on 46 adult patients composed of 2 subdivided groups, an asymmetry group (n=26) and a symmetry group (n=20). The asymmetry group was divided between patients with hemimandibular hyperplasia (HH, n=8) and hemimandibular elongation (HE, n=18). Using cross-sectional computed tomography images, the thickness of cancelleous bone in the buccal area of the mandible, thickness of buccal cortex in the buccal aspect of the mandible, thickness of cancellous bone in the inferior aspect of the mandible, thickness of buccal cortex in the inferior aspect of the mandible, and cross-sectional surface area of the mandible were measured. Results: In the asymmetry group, the cross-sectional area of the mandible including the inferior alveolar nerve positioned on the affected side was significantly different from the symmetry group. Thickness of cancelleous bone in the buccal aspect of the mandible, thickness of cancelleous bone in the inferior aspect of the mandible, and cross-sectional surface area of the mandible in the affected site of hemimandibular hyperplasia was significantly smaller than in the symmetry group. Conclusion: The inferior alveolar nerve runs lower and in a more buccal direction and shows a smaller cross-sectional surface of the mandible in the hemimandibular hyperplasia patients with asymmetry.

Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material (분할가변금형을 이용한 박판의 가변성형공정 연구)

  • Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2010
  • In general, the flexible forming die that has been used in the flexible forming process has the identical punch size; hence, its flexibility is relatively low because the range of allowable curvature radii is limited due to the uniform punch tip radius. Hence, a conceptual design of a sectional flexible die is presented for enhancing the flexibility of the forming process. Two punches of different sizes are used to configure the arbitrary forming surface. For a forming region with a relatively large curvature radius, a large punch array block is used; on the other hand, for the forming regions with small curvature radii, a small punch block is used. The cross-sectional profiles are compared with the target shape for evaluating the effectiveness of the process. Consequently, it is confirmed that the sectional flexible die can be used along with a combination of punch blocks of different sizes for manufacturing objective surfaces of complex shapes.

Interaction Analysis between Tapered Sectional Launching Nose and Superstructure Section of ILM Concrete Bridge (변단면 압출추진코와 ILM 교량 상부단면의 상호작용 해석)

  • Lee Hwan-Woo;Jung Du-Hwoe;Ahn Tae-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.139-150
    • /
    • 2006
  • ILM(incremental launching method) bridge is one of the prestressed concrete bridge construction methods widely adopted owing to its effectiveness for the quality control. The sections of the launched superstructure pass every position of the bridge spans. This launching process causes the bridge sections to be experienced in the quite different stress states with the stress state occurred after construction completely. Due to the self weight of sections, particularly, the superstructure sections(deck) experience maximum positive and negative moment as well as maximum shear force during launching process. To minimize the temporarily caused sectional forces, launching nose is generally used in the construction method. Therefore, the magnitude of this sectional forces should be checked for the safety of super structure in construction and it is dependent on the structural characteristics of launching nose. In this study, the simplified formulas to analyze the sectional force occurred by the nose-deck interaction in ILM construction are developed. The considering parameters are the span length ratio, stiffness ratio and weight ratio between the launching nose and the super structure. In particular, the developed formulas can consider the tapered sectional shape of launching nose and the diaphragm wall in the superstructure. Additionally, the sensitivity analysis is performed to analyze the effects of nose-deck interaction according to the design parameters.

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

Evaluation of Support Performance of Fiber-Net Integrated Shotcrete in Tunnel Support System (숏크리트용 섬유 그물망 일체형 터널 지보시스템의 지보 성능 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.545-552
    • /
    • 2020
  • This study evaluated the support performance of fiber-net integrated shotcrete in tunnel support system developed for the purpose of improving constructability and stability while fully performing its mechanical performance as a tunnel support materials by four-point bending test, two-dimensional numerical analysis, and cross-sectional analysis. As a result of evaluating the flexural performance through a four-point bending test, in the case of fiber-net reinforced shotcrete, the tensile performance of fiber-net resulted in a continuous increase in load after crack occurrence, unlike steel fiber reinforced shotcrete. Also, the results of the tunnel cross-sectional structure analysis for ground conditions and the cross-sectional analysis of fiber-net and steel fiber reinforced shotcrete showed that sufficient support performance can be exhibited even if the thickness of fiber-net reinforced shotcrete was reduced compared to the previous one. Additionally, through these results, the support pattern of fiber-net integrated shotcrete in tunnel support system, which can be applied efficiently to the construction sections requiring higher stability among the rock mass class III, was proposed.

Development of Drift Design Method of High-rise buildings considering Material Properties of Shear Walls and Design Variable Linking Strategy (RC 전단벽의 재료 물성과 부재 그룹핑을 고려한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.487-494
    • /
    • 2004
  • Resizing techniques have been recognized as practical methods for drift design of high-rise building since sensitivity analysis and iterative structural analysis are not required in implementation. In the techniques, the amount of material of a memberin a building for resizing is determined in terms of cross-sectional areas and sectional inertia moments as design variables. In this study, five drift design methods are developed by considering design variable linking strategy and fomulating resizing algorithm in terms of material properties of shear walls as a design variable. The developed methods are applied to the drift design of 20-story frame-RC shear wall structure, and then evaluated in the view points of practicality and efficiency.

  • PDF

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

Elastic Critical Load of Non-symmetrically Tapered Columns by Numerical Method (수치해석법에 의한 비대칭 변단면 기둥의 탄성 임계하중)

  • 신세욱;김선혜;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.11-18
    • /
    • 1999
  • For the proper design of a slender compression member, the exact determination of the elastic critical load is crucial, In the cases of non-prismatic compression members, the determinations of the elastic critical load cannot be usually expressed in closed forms. h this paper, the non-symmetrically tapered compression members with arbitrary boundary conditions me analysed by using the finite element method to determine the elastic critical load. The main parameters considered in the numerical analysis are the In Parameter, $\alpha$ and the sectional property parameter, m. To generaliza the unmerical analysis, of the computed results for each sectional parameter, m are presented in algebraic equations, which agrees fairy well with those by F.E.M in most cases.

  • PDF