DOI QR코드

DOI QR Code

Comparative Analysis between Directly Measured Diameter in 2D Angiography and Cross-Sectional Area-Converted Diameter in MR Image

2D 혈관조영술에서 직접 측정한 혈관 직경과 MR 영상에서 단면적 기반 환산 직경의 비교 분석

  • Ki-Baek Lee (Department of Radiologic Technology, Chungbuk Health & Science University) ;
  • Mi-Hyeon Kim (Department of Radiology, Asan Medical Center)
  • 이기백 (충북보건과학대학교 방사선과) ;
  • 김미현 (서울아산병원 영상의학과)
  • Received : 2023.08.01
  • Accepted : 2023.09.13
  • Published : 2023.10.31

Abstract

This study aimed to quantitatively compare the diameters measured directly from the coronal plane or sagittal plane of 2D digital subtraction angiography (DSA) and the cross-sectional area-converted diameters calculated from contrast-enhanced MR (CE-MR) imaging. A retrospective analysis was conducted on 20 patients who underwent both 2D DSA and CE-MR imaging. Firstly, the venous diameters of the superior sagittal sinus (SSS) and transverse sinus (TS) were directly measured from 2D DSA. Subsequently, the axial planes for SSS diameter and the sagittal plane for TS in CE-MR imaging were utilized to calculate cross-sectional area-based converted diameters. The numerical values obtained from 2D DSA and CE-MR imaging were compared pairwise at each location. For SSS, the diameter measured by 2D DSA was 27% larger than the conversion-based diameter from CE-MR imaging (9.8±1.4 mm vs. 7.1±1.3 mm, P<0.05). Similarly, for the right TS, the difference was 16% (8.8±3.2 mm vs. 7.4±2.0 mm, P<0.05), and for the left TS, the difference was 22% (8.4±2.8 mm vs. 6.6±1.3 mm, P<0.05). In conclusion, the diameter measured directly in conventional 2D DSA may be larger than the diameter converted based on the cross-sectional area. Therefore, when selecting the size of the stent, it is crucial to make precise determinations while keeping this fact in mind.

Keywords

References

  1. Li K, Ren M, Meng R, Ding Y, Rajah GB, Wang F, et al. Efficacy of stenting in patients with cerebral venous sinus thrombosis-related cerebral venous sinus stenosis. J Neurointerv Surg. 2019;11(3):307-12. DOI: http://dx.doi.org/10.1136/neurintsurg-2018-014328
  2. Levitt MR, Albuquerque FC, Gross BA, Moon K, Jadhav AP, Ducruet AF, et al. Venous sinus stenting in patients without idiopathic intracranial hypertension. J Neurointerv Surg. 2017;9(5):512-5. DOI: http://dx.doi.org/10.1136/neurintsurg-2016-012405
  3. Fargen KM, Liu K, Garner RM, Greeneway GP, Wolfe SQ, Crowley RW. Recommendations for the selection and treatment of patients with idiopathic intracranial hypertension for venous sinus stenting. J Neurointerv Surg. 2018;10(12):1203-8. DOI: http://dx.doi.org/10.1136/neurintsurg-2018-014042
  4. Nicholson P, Brinjikji W, Radovanovic I, Hilditch CA, Tsang ACO, Krings T, et al. Venous sinus stenting for idiopathic intracranial hypertension: A systematic review and meta-analysis. J Neurointerv Surg. 2019;11(4):380-5. DOI: http://dx.doi.org/10.1136/neurintsurg-2018-014172
  5. Giridharan N, Patel SK, Ojugbeli A, Nouri A, Shirani P, Grossman AW, et al. Understanding the complex pathophysiology of idiopathic intracranial hypertension and the evolving role of venous sinus stenting: A comprehensive review of the literature. Neurosurg Focus. 2018;45(1):E10. DOI: http://dx.doi.org/10.3171/2018.4.FOCUS18100
  6. Peterson KA, Kittel C, Lee KE, Garner R, Nechtman CM, Brown P, et al. Angiographic cerebral venous sinus calibers and drainage patterns in patients with normal intracranial pressure and idiopathic intracranial hypertension. J Neurointerv Surg. 2021; 13(10):958-63. DOI: http://dx.doi.org/10.1136/neurintsurg2020-016976
  7. Saber H, Lewis W, Sadeghi M, Rajah G, Narayanan S. Stent survival and stent-adjacent stenosis rates following venous sinus stenting for idiopathic intracranial hypertension: A systematic review and meta-analysis. Interv Neurol. 2018;7(6):490-500. DOI: http://dx.doi.org/10.1159/000490578
  8. Lee NJ, Chung MS, Jung SC, Kim HS, Choi CG, Kim SJ, et al. Comparison of high-resolution mr imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease. AJNR Am J Neuroradiol. 2016;37(12): 2245-50. DOI: http://dx.doi.org/10.3174/ajnr.A4950
  9. Loiudice P, Pellegrini M, Marino M, Mazzi B, Ionni I, Covello G, et al. Choroidal vascularity index in thyroid-associated ophthalmopathy: A cross-sectional study. Eye Vis (Lond). 2021;30;8(1):18. DOI: http://dx.doi.org/10.1186/s40662-021-00242-6
  10. Kim DO, Kim HJ, Jung HJ, Son HK, Hong JO, Jeong HK, et al. Clinical usefulness of 3-D image rendering using DICOM images in cardiovascular system. Journal of the Korean Society of Picture Archiving and Communications System. 2001;7:41-7. Retrieved from https://www.ksiim.org/site/journal/search/archives
  11. Yoon JT, Lee KB. Radiation dose reduction of lens by adjusting table height and magnification ratio in 3D cerebral angiography. Journal of Radiological Science and Technology. 2022;45(4):313-20. DOI: https://doi.org/10.17946/JRST.2022.45.4.313
  12. Kim SG, Kim SH. Usefulness of 3D rotational angiography for cerebral vascular diameter measurement. Journal of Radiological Science and Technology. 2023;46(1):9-14. DOI: https://doi.org/10.17946/ JRST.2023.46.1.9
  13. Schneiders JJ, Marquering HA, Antiga L, Van den Berg R, VanBavel E, Majoie CB. Intracranial aneurysm neck size overestimation with 3D rotational angiography: The impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics. AJNR Am J Neuroradiol. 2013;34(1):121-8. DOI: https://doi.org/10.3174/ajnr.A3179
  14. Brinjikji W, Cloft C, Lanzino G, Kallmes DF. Comparison of 2D digital subtraction angiography and 3D rotational angiography in the evaluation of dome-to-neck ratio. AJNR Am J Neuroradiol. 2009;30(4):831-4. DOI: https://doi.org/10.3174/ajnr.A1444
  15. Timaran CH, Rosero EB, Valentine RJ, Modrall JG, Smith S, Clagett GP. Accuracy and utility of three-dimensional contrast-enhanced magnetic resonance angiography in planning carotid stenting. J Vasc Surg. 2007;46(2):257-63. DOI: https://doi.org/10.1016/j.jvs.2007.03.051
  16. Lee J, Chung TS, Lee KY, Suh SH. Comparison of non-invasive imaging studies in the evaluation of carotid artery stenosis and occlusion: CT angiography, time-of-flight MR angiography and contrast-enh anced MR angiography. J Korean Soc Magn Reson Med. 2011;15:234-41. Retrieved from https://synapse.koreamed.org/upload/synapsedata/pdfdata/0040jksmrm/jksmrm-15-234.pdf https://doi.org/10.13104/jksmrm.2011.15.3.234
  17. Bharatha A, Yeung R, Durant D, Fox AJ, Aviv RI, Howard P, et al. Comparison of computed tomography angiography with digital subtraction angiography in the assessment of clipped intracranial aneurysms. J Comput Assist Tomogr. 2010;34(3): 440-5. DOI: https://doi.org/10.1097/RCT.0b013e318 1d27393
  18. Dinkin MJ, Patsalides A. Venous sinus stenting in idiopathic intracranial hypertension: Results of a prospective trial. J Neuroophthalmol. 2017;37(2): 113-21. DOI: https://doi.org/10.1097/WNO.0000000000000426
  19. Leishangthem L, SirDeshpande P, Dua D, Satti SR. Dural venous sinus stenting for idiopathic intracranial hypertension: An updated review. J Neuroradiol. 2019;46(2):148-54. DOI: https://doi. org/10.1016/j.neurad.2018.09.001
  20. Boyter E. Idiopathic intracranial hypertension. JAAPA. 2019;32(5):30-5. DOI: https://doi.org/10.1097/01.JAA.0000554732.85914.91
  21. Garner RM, Aldridge JB, Wolfe SQ, Fargen KM. Quality of life, need for retreatment, and the re-equilibration phenomenon after venous sinus stenting for idiopathic intracranial hypertension. J Neurointerv Surg. 2021;13(1):79-85. DOI: https://doi.org/10.1136/neurintsurg-2020-016124
  22. Lee KB, Nam KC, Jang JS, Kim HC. Feasibility of the quantitative assessment method for CT quality control in phantom image evaluation. Appl. Sci. 2021;11:3570. DOI: https://doi.org/10.3390/app11083570
  23. Lee KB, Cho YB, Jeong HK, Nam KC, Kim HC. The study on automatized quantitative assessment method of CT image in quality control: Focusing on spatial and low contrast resolution. Journal of The Institute of Electronics and Information Engineers. 2017;54(12):186-94. DOI: https://doi.org/10.5573/ieie.2017.54.12.186
  24. Lee JM, Park JH, Kim JS, Lim CH, Lee KB. Comparison of sizes of anatomical structures according to scan position changes in patients with interstitial lung disease using high-resolution thoracic CT. Journal of Radiological Science and Technology. 2021;44(2):91-100. DOI: https://doi.org/10.17946/JRST.2021.44.2.91
  25. Svoboda N, Bradac O, Mandys V, Netuka D, Benes V. Diagnostic accuracy of DSA in carotid artery stenosis: A comparison between stenosis measured on carotid endarterectomy specimens and DSA in 644 cases. Acta Neurochir(Wien). 2022;164(12): 3197-202. DOI: https://doi.org/10.1007/s00701-022-05332-5
  26. Kim HG. Normal corpus callosum dimensions measured by MRI. Journal of Radiological Science and Technology. 2008;31(3):277-85. Retrieved from https://koreascience.kr/article/JAKO200804748557363.page