• Title/Summary/Keyword: secondary wastewater

Search Result 165, Processing Time 0.035 seconds

Treatment of Wastewater Containing Ethanolamine from Coolant of the Secondary System of Nuclear Power Plant by UV/GAC Adsorption Oxidation Method (UV/GAC 흡착산화 공법을 이용한 원자력 발전소 2차 계통 냉각수로부터 발생하는 에탄올 아민 함유 폐수처리)

  • Choi, Min Jun;Kim, Hansoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.318-325
    • /
    • 2017
  • Wastewater including ethanolamine used in the second generation of nuclear power plants is filtered out in the ion exchange resin of the condensate polishing plant. In the regeneration process of ion exchange resin, a strong acidic wastewater containing ethanolamine and a lager amount of ionic substances are released. In this study, the process involving UV oxidation part with or without absorbents was developed for treating wastewater released from the ionic exchange resin. The effect of adsorbents on the wastewater treatment was investigated by using UV oxidation system developed by us. As a result, the COD removal efficiency of UV/GAC process with the granular activated carbon (GAC) as an adsorbent was 71.3% at pH 12.8. The removal efficiency was 21.8% higher than that of the wastewater treated using UV oxidation process without any adsorbents at the same condition. The removal of T-N was 88.6% at pH 12.8 when using UV oxidation with the GAC absorbent, which was 18.0% higher than that of using the UV oxidation process without any absorbents. It is thought that ethanolamine adsorbed on the absorbent improved the efficiency of UV oxidation process. Therefore, the UV/GAC adsorption oxidation process can be more effective in treating wastewater containing ethanolamine than that of using the process without any absorbents.

Ensuring Stability in Accordance with the Secondary sedimentation tank Surface Loading rate Increase (장방향 이차침전지에서 이중정류벽 설치를 통한 침강속도 증대에 따른안정성 확보 분석)

  • Choi, Dongkyu;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • Improvement of the solid-liquid separation efficiency in the secondary sedimentation tank of the biological treatment process, is known to be increasing effectiveness of the overall system operation. Sewage treatment plant effluent SS is composed of most organic substances. In order to reduce the SS component in the secondary sedimentation tank discharge, fine SS components constituting the heterogeneous should be increased by its own aggregation (self flocculation), so that can be deleted through their precipitation. So, it is improved through using the installation of double rectification wall in this secondary tank. In case, sewage is rapidly increased due to the daily change of the influent water, it was confirmed that suspended solids caused by the impact load are processed stably. Therefore, there is a need for a facility installation which can be its own aggregation for reduction suspended solids in secondary sedimentation tank.

Solubilization of Sewage Sludge by Microwave Pretreatment and Elutriated Acid Fermentation (Microwave를 이용한 하수슬러지의 전처리 특성 및 회분식 세정산발효를 이용한 슬러지 가용화)

  • Lee, Won-Sic;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1130-1136
    • /
    • 2006
  • This work elucidates the effects of pretreatment of the sewage sludge from wastewater treatment plant by microwave irradiation on elutriated acid fermentation. These experiments typically fell into two process; pretreatment as microwave irradiation and elutriated acid fermentation for hydrolysis and acidification as main process of primary sludge. The results of maximum solubilization rate of B, D primary and secondary sludge were 0.042, 0.086 and 0.15 gSCODprod./gICODin and the optimum irradiation time of microwave on 2,450 MHz and 900 W were 5 min. for primary sludge and 7 min. for secondary sludge. From batch tests on elutriated acid fermentation that was used the pretreated primary sludge as microwave, the optimum pH and HRT (hydraulic retention time) were 7 and 5 days at $35^{\circ}C$ condition.

Stochastic Programming Model for River Water Quality Management (추계학적 계획모형을 이용한 하천수질관리)

  • Cho, Jae Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.231-243
    • /
    • 1994
  • A stochastic programming model for river water quality management was developed. River water quality, river flow, quality and flowrate of the wastewater treatment plant inflow were treated as random variables in the model. Withdrawal for water supply and submerged weir reaeration were included in the model itself. A probabilistic model was formulated to compute the expectation and variance of water quality using Streeter-Phelps equation. Chance constraints of the optimization problem were converted to deterministic equivalents by chance constrained method. Objective function was total annual treatment cost of all wastewater treatment plants in the region. Construction cost function and O & M cost function were derived in the form of nonlinear equations that are functions of treatment efficiency and capacity of treatment plant. The optimization problem was solved by nonlinear programming. This model was applied to the lower Han River. The results show that the reliability to meet the DO standards of the year 1996 is about 50% when the treatment level of four wastewater treatment plants in Seoul is secondary treatment, and BOD load from the tributary inflows is the same as present time. And when BOD load from Tanchon, Jungrangchon, and Anyangchon is decreased to 50%, the reliability to meet the DO standards of the year 1996 is above 60%. This results indicated that for the sake of the water quality conservation of the lower Han River, water quality of the tributaries must be improved, and at least secondary level of treatment is required in the wastewater treatment plants.

  • PDF

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

A study on the dye wastewater treatment by Fenton oxidation process (Fenton 산화공법을 적용한 염색폐수처리 연구)

  • Ahn, June-Shu;Park, Tae-Sool;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4274-4282
    • /
    • 2011
  • In this study, Fenton reaction was studied for the possibility of applying as advanced treatment and its optimal condition for the removal of refractory organics from the dye wastewater. Fenton reaction was applied to remove refractory organics after the bio-treatment (secondary treatment) inside test laboratory and on-site pilot plant. Wastewater from the secondary treatment was used and its $COD_{Mn}$ was measured as 30~50mg/L. After the Fenton reaction, the optimal condition was found as pH 3~3.5, reaction time 2~2.5hr, chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was 3 : 1. When chemical input ratio of ($FeCl_2$(33%)/$H_2O_2$(35%)) was at its optimal, amount of sludge volume ($SV_{2hr}$) was 21~28%. With pilot plant test, removal rate was heavily influenced by the hydraulic retention time(HRT), and optimum value of HRT was 2.0 hr. When pilot plant($2m^3/d$) was placed on-site and operated continuously, it showed steady and fairly good treatment of COD where COD removal rate was 60~70%, treated water showed below 20mg/L.

Application of a Pond System to Korea for Treatment and Recycling of Wastewater (하수 처리 및 재활용 연못시스템의 국내 응용)

  • Yang, Hongmo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 1995
  • The applicability to Korea is examined of a pond system which treats and recycles wastewaters. Air temperature and solar radiation of the pond systems at Corinne, Utah, and Eudora, Kansas, which are located in temperate regions of the U.S., are compared with those of Kimpo lying in the mid-western part of Korea. Analyzed are also $BOD_5$ and SS concentrations, algal concentrations, pH levels, and water temperature of the two systems. Air temperature of Kimpo is quite similar to that of the two systems, and solar radiation of Kimpo is more conducive than that of the systems to the growth of algae during summer. Analysis of $BOD_5$ and SS concentrations in the final effluent of the systems shows that they meet the secondary treatment standards. The study demonstrates that wastewater treatment pond system which is similar in design to the systems can be reliably utilized at Kimpo, Korea. A model is proposed which can integrate a pond system with aquaculture and agriculture.

  • PDF

Growth and N, P removal efficiency of Chlorella vulgaris according to the nitrogen sources and pH condition (질소원 및 pH 조절빈도에 따른 Chlorella vulgaris의 성장특성 및 하수고도처리능 평가)

  • Han, Su-Hyun;Kim, Sun-Jin;Kim, Tae-Hyeong;Cho, Ki-Ju;Lee, Yunhee;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.833-840
    • /
    • 2012
  • This study aimed to investigate growth rate and nutrient removal efficiency of Chlorella vulgaris according to nitrogen sources and frequency of pH adjustment. Nitrogen and phosphorus removal efficiencies were evaluated in the three different conditions using $NO_3{^-}$, $NH_4{^+}$ as a sole nitrogen source and mixed condition. Initial nutrient concentrations in artificial wastewater were 30 mg-N/L and 3 mg-P/L similar to secondary wastewater effluent. When nitrogen source was $NO_3{^-}$, there was no inhibition on the growth of C. vulgaris with adjusting pH every 24 hr while growth inhibition occurred with $NH_4{^+}$ caused by pH drop. N, P removal efficiencies were no significant depending on the nitrogen sources. As pH was adjusted to 7 by pH-stat, growth rate and nutrient removal efficiencies were increased compared to adjusting pH every 24 hr, however, growth rate and nutrient removal efficiencies were no significant depending on the nitrogen sources.

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Characteristics of TOC in effluent discharge from public sewage treatment works in korea (우리나라 공공하수처리시설의 TOC 배출특성 및 관리방안 연구)

  • Jeong, Dong-Hwan;Choi, In-Cheol;Cho, Yangseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang;Park, Hoowon;Shin, Hyunsang;Hur, Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.657-668
    • /
    • 2014
  • Under Korea's Enforcement Decree of the Framework Act on Environmental Policy amended in 2013, total organic carbon (TOC) is newly added as water quality parameter to assess organic pollution in water and aquatic ecosystem. To meet the TOC requirement and improve quality of effluent discharged into public watershed, it is also necessary to develop standards for TOC in effluent from public sewage treatment works (PSTWs). In this study, we reviewed the characteristics and removal efficiency of TOC in influent and effluent of PSTWs. The study found that phosphorus treatment process removed not only soluble phosphorus but also a portion of TOC remaining after the secondary treatment process. TOC concentration in effluent from PSTWs operated in tandem with industrial wastewater treatment work was higher due to influx of insoluble substances from the industrial wastewater treatment work. In order to lay a foundation for the management of TOC from PSTWs, it is necessary to carry out research on TOC from different perspectives. For example, studies on the generation mechanism of TOC and the impact of TOC on drinking water resources, assessment of effluent qualities through monitoring, and development of measures to control TOC for the preservation of aquatic ecosystem are needed.