• Title/Summary/Keyword: secondary minerals

Search Result 136, Processing Time 0.049 seconds

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

A NEW TREATMENT SYSTEM FOR ANIMAL WASTE WATER USING MICROORGANISM, SOIL AND VEGETATION

  • Oshida, T.;Fukuyasu, T.;Kohzaki, K.;Izumikawa, Y.;Kawanabe, S.;Konishi, S.;Oikawa, N.;Matsumoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.205-209
    • /
    • 1993
  • A new treatment system for animal waste water has been developed as an alternative to the activated sludge process. It consists of two treatments; one is operated with 7 tanks, and the other is soil and plant cultivation bed. Aerobic microorganisms are added to the influent water in the tanks where the water is aerated so that the microbes utilize the pollutants, while sedimentation removes the indigestible solids. In the secondary treatment the water, which has already received a primary treatment, is filtered through soil where it also receives treatment by soil organisms. In addition there is transpiration of water and absorption of minerals by plants. In the primary treatment BOD, SS, coliforms (E. coli), TP and total bacteria were removed 79-99%, but COD and TN were removed only 58% and 36%, respectively. In the secondary treatment removal of nutrients proceeded further, and 93-99% of pollutants were removed. The treated waters met the quality standard of discharge water in Japan except for TN, which was in too great a concentration to meet discharge standards. This problem requires further study.

Methods in Palaeomagnetism (I) (고자기학(古磁氣學)의 방법(方法) (I))

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 1984
  • For the discussion of palaeogeomagnetic field direction and the movement and rotation of geotectonic blocks it is prerequisite to eliminate the secondary remanent magnetization component out of the NRM vector of given rock samples. Among various techniques alternating field and thermal demagnetization methods are most easily applicable and most widely used ones. Physical principle underlying these methods is the concept of relaxation time: Either with an action of external magnetic field or with an elevated temperature relaxation time of magnetic minerals can be drastically shortened. It has been furthermore shown experimentally that the secondary remanent magnetization can be more easily demagnetized than the primary remanent magnetization. Through careful stepwise demagnetization it should also be possible to discriminate the kind of various remanent magnetizations. In addition to the introduction to the underlying physical principles and experimental results of the alternating field and thermal demagnetization this paper gives various practical tips in earring out the demagnetization experiments. Each alternating field and thermal demagnetization instrumentation which is easily adaptable to domestic palaeomagnetic laboratories is also introduced. This paper provides a compact and practical introduction to the methods in palaeomagnetism and would be of interest to present workers and to those who want to embark on research in this field.

  • PDF

A review on the recovery of the lithium carbonate powders from lithium-containing substances (리튬 함유 물질로부터 탄산리튬 회수에 대한 고찰)

  • Kim, Dae-Weon;Park, Jae Ryang;Ahn, Nak-Kyoon;Choi, Gwang-Mook;Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.91-106
    • /
    • 2019
  • The demand for lithium has increased sharply due to the explosive increase in lithium secondary batteries for environment-friendly vehicles (EV: Electric Vehicle, HEV: Hybrid Electric Vehicle, PHEV: Plug-in Hybrid Electric Vehicle). Traditionally, lithium has been produced mainly from lithium-containing minerals and brine, and recently it also has been recovered along with other valuable metals by recycling cathode materials of lithium secondary batteries. In this study, we comprehensively reviewed various recovering precesses of lithium from lithium-containing substances.

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF

Mineralogical Characteristics of the Noro and Miag Series Soils Developed on the Cinder Cones in Jeju Island (제주도(濟州道) 산록(山麓)의 분석구(噴石丘)에서 발달(發達)된 노로통과 미악통 토양(土壤)의 광물학적(鑛物學的) 특성(特性))

  • Zhang, Yong-Seon;Kim, Yoo-Hak;Song, Kwan-Cheol;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.145-152
    • /
    • 2002
  • The composition of primary minerals in the rocks and secondary minerals of clay fractions of the soil developed on the cinder cones in the foot of Halla Mt., Jeju Island was investigated. The effects of parent materials on the physico-chemical properties and mineralogical characteristics were evaluated by XRD, DTA with the chemical composition of $H^+$ saturated clays. The main rock-forming minerals of a residual cinder cones were plagioclase with subsidiary minerals of hematite, gibbsite and quartz in the red cinder cone and of augite, quartz, feldspars and olivine in black cinder cone. It is demonstrated that ignition loss and sesquioxides content were higher in the red cinder soil than black cinder, which was resulted in the intermittent eruption of volcanic activity. For the chemical analysis of whole soils, $SiO_2/Al_2O_3$ ratio was increased from 2 to 3, but Ignition loss is decreased and $K_2O$ content are very low with increasing the soil depth in regard to the composition and kinds of clay minerals. No clay formation from micas mineral were in volcanic ashes. Dominant clay minerals of the cinder cone soils as a black and red cinder cone soil were allophane with some quartz and feldspars, while vermiculite, illite, kaolin were coexisted as a subsidiary minerals. But the red cinder cones soils had more hematite and gibbsite of the clay fractions than the black soils with magnetite. The exothermic pick of DTA at about $660^{\circ}C$ for cinder cone soils might be corresponded the oxidation magnetite to hematite reation. With regarding to the compositions of mineral detected by X-ray diffractogram and the properties of minerals by D.T.A thermogram, the dominant clay mineral was allophane of the cinder cone soils with some ferrous compounds, red colour of the cinder cone soils which are originated in hematite.

Petrochemical Study on the Alkaline Gabbroic Host Rocks of Titaniferous Magnetite Deposits in Gonamsan, Yeoncheon-Gun, South Korea (고남산(古南山) 함(含)티탄자철광상(磁鐵鑛床)의 모암(母岩)인 알카리반려암질암의 암석화학적(岩石化學的) 연구(硏究))

  • Chang, Ho Wan;Yum, Byoung Woo;Park, No Young
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 1987
  • The host rocks of titaniferous magnetite deposits in Gonamsan are alkaline gabbros, which are typical of undersaturated alkaline rocks in terms of the lack of normative quartz. According to field occurrences and petrographic features, these alkaline gabbros are divided into 3 rock types: coarse-grained and pegmatitic rock, medium-grained rock with equigranular texture, and layered cumulate rock. All these rocks mainly contain clinopyroxene(salite), plagioclase(An 43-66), pargasite, and ilmenite. The accessory minerals are apatite, sphene, quartz, and sometimes titaniferous magnetite. Pargasite, sphene, and quartz are considered to be secondary minerals formed by the reaction among clinopyroxene, plagioclase and Fe-Ti oxide at deuteric stage. Fe-Ti oxides generally occur as ilmenite in the alkaline rocks, and titaniferous magnetite in the ore deposits. Layered cumulate rocks are characterized by a recurrence of discontinuous thin mesolayer of clinopyroxene-pargasite within leucolayer mainly composed of plagioclase. Clinopyroxene is cumulus mineral whereas plagioclase, ilmenite and apatite occur as intercumulus minerals. According to the variation diagrams of oxide and trace element contents against the differentiation index, incompatible elements, such as Na, Ba and Sr, show positive correlations whereas compatible elements, such as Mg and Cr, show negative correlations. However some compatible elements, such as Co, Ni and V show irregular variations, reflecting relative cumulate status of cumulus and intercumulus minerals. On the de la Roche multicationic diagram, these alkaline gabbros are distributed along the differentiation curve of undersaturated alkaline series from alkaline basaltic composition through basanitic composition to tephritic composition. Layered cumulate rocks, which are distributed between basanitic composition and tephritic composition, reflect their cumulate character, slightly scattering away from the curve. The medium-grained rock shows higher contents in Ba, Sr and light rare earch elements than the coarse-grained and pegmatitic rock. The former shows two times higher contents of total rare earth elements than the latter, $while(La/Lu)_{cn}$ ratios maintain fairly constant values of 5.08~5.06 in these two rocks. This means that coarse-grained and pegmatitic rock, as compared with the medium-grained rock, was formed by the earlier differentiated magma but rare-earth element distribution pattern remained almost parallel during differentiation. From the data the above mentioned, these alkaline gabbros are considered to be comagmatic and to be formed by intrusions of differentiated magmas in its reservoir.

  • PDF

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Occurrence, Geochemistry and Origin of $Co_2$-rich Water from the Chungcheong Area, Korea (충청지역 탄산수의 산출양상, 지화학적 특성 및 생성기원)

  • 정찬호;김종근;이재영
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.227-241
    • /
    • 2001
  • Several $Co_2$-rich springs in the Chungcheong area, Le., the Angsung spring, the Chojung spring, the Myungam spring, the Bukang spring and the Daepyung spring have been long known for their particular water chemistry. The occurrences of these springs are closely related to the geologic structure of Mesozoic granite such as dyke swarms, fault zones and the geologic boundary between granite and its adjacent gneiss. The $Co_2$-rich water samples show a high $Co_2$ concentration ($P_{CO2}$ 0.25 atm to 0.99 atm), weak acidic pHs and the electrical conductivity ranging from 101 to 2,950 ${\mu}$S/cm. The $Co_2$-rich water samples are classified into the Ca-$HC0_3$ type and the Ca(Na)-$HCO_3$) type in chemical composition. Environmental isotopic data $^{2}H/^{1}H, ^{18}O/^{16}O$) indicated that $Co_2$-rich water was meteoric origin. The ${\delta}^{13}C$ values of $Co_2$-rich water range from -3.1$\textperthousand$ to -6.8$\textperthousand$ PDB. The values indicate that $H_2CO_3^0$ and $HC0_3^-$ of the water samples are mainly originated from a deep-seated source and partly contributed from carbonatc minerals. The major minerals determining the chemistry of $Co_2$-rich watcr arc probably the carbonate minerals which are present as veins and secondary minerals, and the plagiocalse in granite and gneiss.

  • PDF

Formation of Clay Minerals by Water-Rock Interaction in the Fracture of Gneiss (편마암 열극에서의 물-암석 상호반응에 의한 점토광물 생성)

  • Jeong, Chan-Ho;Kim, Soo-Jin;Koh, Yong-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 1994
  • As the groundwater flows along the fractures of crystalline rocks, it will be in contact with the fracture walls mostly coated by secondary minerals which are quite different form those of host rocks. The presence of fracture-filling minerals in crystalline rocks is important on the view point of radioactive waste disposal because of their great surface reactivity. The Surichi drill hole of 200 m in depth in the Yugu area composed mainly of Precambrian gneiss was selected to study the formation process of clay minerals on the fracture wall of gneiss, and their relation with present groundwater. The water-rock interaction in fractures resulted in the formation of gibbsite and clay minerals. They are formed by two different processes : (1) Incongruent dissolution of feldspar by groundwater diffused from a fracture path into rock matrix produced smectite and illite in situ, (2) on the wall of fracture, gibbsite, kaolinite, smectite and illite are formed by precipitation of dissolved species in groundwater. They show the paragenetic sequence such as gibbsite${\leftrightarrow}$kaolinite${\leftrightarrow}$smectite or illite. The paragenetic sequence of fracture-filling minerals was controlled by increase of pH of groundwater, decrease of fracture permeability by precipitation of fillings, and immobility of alkali or alkaline earths in groundwater. The groundwater from the Surichi borehole is a $Na-HCO_{3}$ type with pH range of 8.6-9.2. The sodium and bicarbonate in groundwater would be supplied by the dissolution of albite and calcite, respectively. The saturation index of groundwater and surface water calculated by WATEQ4F indicates that gibbsite and kaolinite are under precipitation to equilibrium state, and that smectite and illite are under equilibrium to redissolution environment. The stability relation of clay minerals in the $Na_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$ system shows that kaolinite is stable for all waters.

  • PDF