DOI QR코드

DOI QR Code

Granulation of Natural Zeolite Powder Using Portland Cement

포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화

  • Kim, Su-Jung (Department of Biological Environment, Kangwon National University) ;
  • Zhang, Yong-Seon (National Institute of Highland Agriculture, Rural Development Administration) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • 김수정 (강원대학교 자원생물환경학과) ;
  • 장용선 (농촌진흥청 고령지농업연구소) ;
  • 옥용식 (강원대학교 자원생물환경학과) ;
  • 오상은 (강원대학교 자원생물환경학과) ;
  • 양재의 (강원대학교 자원생물환경학과)
  • Published : 2007.09.30

Abstract

Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

천연 지올라이트를 파쇄하여 일정한 크기의 입제를 생산하는 과정에서 부가가치가 낮은 다량의 미분이 부산물로 발생하고 있다. 본 연구에서는 분말의 천연 지올라이트를 토양 개량제나 폐수처리제의 활용성을 증대시키기 위해 포트랜드 시멘트를 접착제로 혼합하고 열처리하여 재입단화 하였다. 본 실험에 사용한 천연 지올라이트는 경북 영일만 일대에서 산출된 것으로 규반비(Si/Al) 4.8, 양이온치환용량(CEC) 68.1 cmol $kg^{-1}$이었고, clinoptilolite, mordenite이 주 광물이었으며, 기타 smectite, feldspar, quartz 등으로 이루어져 있다. 입상 지올라이트는 미분의 천연 지올라이트에 25%의 포트랜드 시멘트를 접착제로 혼합하고 토련기로 성형한 후 입단화 하였다. 이 시료는 $25^{\circ}C$에서 30일간 양생하고 $400^{\circ}C$에서 3시간 동안 열처리하였을 때 가장 효율적으로 나타났다. 입상의 지올라이트를 조제하는 과정에서 비정질의 산화광물이 생성되어 지올라이트 입단의 X-선 회절폭이 넓게 나타났고, 천연 지올라이트에 알칼이와 열처리한 시료에서는 가변전하 특성을 나타났다. 지올라이트 입단의 주요한 광물은 clinoptilolite, mordenite, tobermorite였고 천연 지올라이트와 비교해 볼 때 pH 완충력과 전하밀도가 증가하였다.

Keywords

References

  1. Hickman, J. S. and Whitney, D. A. (1988) Soil conditioner. North Central Regional Extension Publication 295, p.4
  2. Sojka, R. E. and Lentz, R. D. (1994) Time for another look at soil conditioners, Soil Sci. 158, 233-234 https://doi.org/10.1097/00010694-199410000-00001
  3. Trout, T. J., Sojka, R. E., and Lentz, R. D. (1995) Polyacrylamide effect on furrow erosion and infiltration. Trans. Amer. Soc. Agric. Eng. 38, 761-766 https://doi.org/10.13031/2013.27889
  4. Klute, A. (1986) Methods of soil analysis: Part I. Physical and mineralogical methods. 2nd ed. Am. Soc. Agron., Madison, WI, USA
  5. Cote, P. (1986) Contaminant leaching from cementbased waste forms under acidic conditions, Ph. D. Dissertation, McMaster University, Canada
  6. Perraki, T. H., Kakali, G., and Kontoleon, F. (2003) The effect of natural zeolites on the early hydration of Portland cement, Micropor. Mesopor. Mater. 61, 205-212 https://doi.org/10.1016/S1387-1811(03)00369-X
  7. Ackley, M. W., Rege, S. U., and Saxena, H (2003) Application of natural zeolites in the purification and separation of gases, Micropor. Mesopor. Mater. 61, 25-42 https://doi.org/10.1016/S1387-1811(03)00353-6
  8. Babel, S. and Kurniawan, T. A. (2003) Low-cost adsorbent for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. B 97, 219-243 https://doi.org/10.1016/S0304-3894(02)00263-7
  9. Ouki, S. K. and Kavannagh, M. (1999) Treatment of metal-contaminated waste waters by use of natural zeolites, Water Sci. Technol. 39, 115-122
  10. Inglezakis, V. J. and Grigoropoulou, H (2004) Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors, J. Hazard. Mater. B 112, 37-43 https://doi.org/10.1016/j.jhazmat.2004.02.052
  11. Noh, J. H and Koh, S. M. (2004) Mineralogical characteristics and genetic environment of zeolitic bentonite in Yeongil area, Korean J. Miner. Soc. 17, 135-145
  12. Zhang, Y. S. (1999) Development of heavy metal adsorbent by granulation of natural zeolite. Ph. D. Dissertation., Kangwon National University, Chuncheon, Korea, p. 94
  13. Nevile, A. M. (1981) Properties of concrete. 3rd ed. Pitman Press, London, UK
  14. Sparks, D. L., A. L. Page, P. A. Helmke, R. H Loeppert, P. N. soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Sumner. (1996) Methods of soil analysis: Part 3. Chemical methods. Soil Sci. Soc. Am., Madison, WI, USA
  15. Gallez, A., Juo, A. S. R., and Herbillon, A. J. (1976) Surface and charge characteristics of selected soils in the tropics, Soil Sci. Soc. Am. J. 40, 601-608 https://doi.org/10.2136/sssaj1976.03615995004000040039x
  16. Schofield, R. K. (1949) Effects of pH on electric charges carried by clay particles, J. Soil Sci. 1, 1-8 https://doi.org/10.1111/j.1365-2389.1950.tb00713.x
  17. Schulthess, C. P. and Sparks, D. L. (1986) Backitration technique for proton isotherm modeling of oxide surfaces, Soil Sci. Soc. Am. J. 50, 1406-1411 https://doi.org/10.2136/sssaj1986.03615995005000060007x
  18. Sposito, G. (1981) The operational definition of the zero point of charge in soils, Soil Sci Soc. Am. J. 45, 292-297 https://doi.org/10.2136/sssaj1981.03615995004500020013x
  19. McCarthy, G. J., Glasser, F. P., and Roy, D. M. (1987) Fly ash and coal conversion by-products: Characterization, utilization and disposal II. Materials Research Society, Symposium proceeding 113. Pittsburgh, USA
  20. Midgley, H. G. and Pettifer, K. (1971) The microstructure of hydrated super sulphated cement, Cement Concrete Res. 1, 101-111 https://doi.org/10.1016/0008-8846(71)90086-X
  21. Ok, Y. S., Lim,S., and Kim, J. G. (2002) Electrochemical properties of soils: principles and applications, Life Sci. Natural Resources Res. 10, 69-84
  22. Ok, Y. S., Jung, J., Lee, O. M., Lim,S., and Kim, J. G. (2003) Surface complexation modeling of cadmium sorption onto synthetic goethite and quartz, Korean J. of Soil Sci. Fert. 36, 210-217
  23. Sparks, D. L. (2003) Environmental soil chemistry, Academic Press, New York, USA
  24. Maesen, T. L. M. and Marcus, B. (2001) Studies in surface science and catalysis, vol. 137. In H van Bekkum et aI. (eds). Introduction to zeolite science and practice. Elsevier, Amsterdam, the Netherlands
  25. Wada, S. I. and Wada, K. (1985) Characteristics and exchangeable cation status of Korea ultisols and alfisols and Thai ultisols and oxisols, J. Soil Sci. 36, 21-29 https://doi.org/10.1111/j.1365-2389.1985.tb00310.x
  26. Malla, P. B. and Komarneni, S. (1990) Synthesis of highly microporous and hydrophilic aluminapillared montmorillonite: water sorption properties, Clays Clay Miner. 38, 363-372 https://doi.org/10.1346/CCMN.1990.0380405
  27. Park, M. and Choi, J. (1995) Synthesis of phillipsite from fly ash, Clay Sci. 9, 219-229
  28. De Boodt, M. F., Bolt, G. H, Hayes, M. H B., and McBride, M. B. (1991) Interactions at the soil colloidsoil solution interface, Kluwer Acdemic Press, Boston, USA
  29. Forbes, E. A, Posner, A M., and Quirk, J. P. (1976) The specific adsorption of divalent Cd, Co, Cu, Pb. and Zn on geothite, J. Soil Sci. 27, 154-166 https://doi.org/10.1111/j.1365-2389.1976.tb01986.x