Mineralogical Characteristics of the Noro and Miag Series Soils Developed on the Cinder Cones in Jeju Island

제주도(濟州道) 산록(山麓)의 분석구(噴石丘)에서 발달(發達)된 노로통과 미악통 토양(土壤)의 광물학적(鑛物學的) 특성(特性)

  • Zhang, Yong-Seon (National Institute of Agricultural Science and Technology) ;
  • Kim, Yoo-Hak (National Institute of Agricultural Science and Technology) ;
  • Song, Kwan-Cheol (National Institute of Agricultural Science and Technology) ;
  • Kim, Sun-Kwan (National Institute of Agricultural Science and Technology)
  • Received : 2002.04.24
  • Accepted : 2002.06.25
  • Published : 2002.06.30

Abstract

The composition of primary minerals in the rocks and secondary minerals of clay fractions of the soil developed on the cinder cones in the foot of Halla Mt., Jeju Island was investigated. The effects of parent materials on the physico-chemical properties and mineralogical characteristics were evaluated by XRD, DTA with the chemical composition of $H^+$ saturated clays. The main rock-forming minerals of a residual cinder cones were plagioclase with subsidiary minerals of hematite, gibbsite and quartz in the red cinder cone and of augite, quartz, feldspars and olivine in black cinder cone. It is demonstrated that ignition loss and sesquioxides content were higher in the red cinder soil than black cinder, which was resulted in the intermittent eruption of volcanic activity. For the chemical analysis of whole soils, $SiO_2/Al_2O_3$ ratio was increased from 2 to 3, but Ignition loss is decreased and $K_2O$ content are very low with increasing the soil depth in regard to the composition and kinds of clay minerals. No clay formation from micas mineral were in volcanic ashes. Dominant clay minerals of the cinder cone soils as a black and red cinder cone soil were allophane with some quartz and feldspars, while vermiculite, illite, kaolin were coexisted as a subsidiary minerals. But the red cinder cones soils had more hematite and gibbsite of the clay fractions than the black soils with magnetite. The exothermic pick of DTA at about $660^{\circ}C$ for cinder cone soils might be corresponded the oxidation magnetite to hematite reation. With regarding to the compositions of mineral detected by X-ray diffractogram and the properties of minerals by D.T.A thermogram, the dominant clay mineral was allophane of the cinder cone soils with some ferrous compounds, red colour of the cinder cone soils which are originated in hematite.

제주도 산록의 분석구에서 발달된 적색분석과 흑색분석에서 발달된 토양과 모재의 광물조성, 화학성분 및 열적 특성을 구명하기 위하여 X-선회절, 열분석(DTA), 화학분석을 실시하였다. 토양모재로서 분석의 주광물은 사장석이었고, 부광물로 적색 분석에서는 hematite, gibbsite, mica, quartz가 소량 함유되어 있으며, 흑색 분석은 휘석, 석영 장석, 감람석으로 흑색 분석이 현무암과 유사한 광물조성과 열적 특성을 보였다. 작열감량과 2, 3 산화물의 함량을 고려하면, 적색 분석이 흑색 분석보다 간헐적인 분출을 일으켰음을 시사한다. 분석구 토양의 점토 규반비($SiO_2/Al_2O_3$)는 2~3 내외로 토심이 깊어질수록 낮아지는 반면에 작열감량은 증가하는 경향이었으며, $K_2O$ 함량이 낮아 운모류의 영향이 적었다. 분석구 토양들의 점토광물은 Allophan이 주광물이며 Vermiculite, Illite, Kaolin광물이 소량 존재하고, 일차광물로는 석영, 장석이 있어 유사한 조성을 보인다. 그러나 적색 분석구 토양의 점토에서는 Gibbsite와 Hematite, magnetite가, 흑색 분석구 토양의 점토에서는 magnetite가 소량 함유되어 있었다. 시차열 분석에서 분석구 토양의 Magnetite ($Fe_3O_4$)가 소성에 의하여 Hematite(${\alpha}-Fe_2O_3$)로 전환되면서 $660^{\circ}C$ 부근에서 강한 발열반응의 열적 특성을 보였다. 따라서, 분석구 토양의 주광물은 철산화물을 함유하는 Allophane으로, 적색 분석구 토양의 색상을 결정하는 주요한 광물은 적철광(Hematite, ${\alpha}-Fe_2O_3$)이었다.

Keywords

References

  1. Brown. G. 1961. The X-ray identification and crystal structures of clay minerals, p 361-410. Mineralogical Society, London, UK
  2. Cas. R.A.F. and J.V. Wright. 1987. Volcanic successions : modem and ancient. p 520-538. Allen and Unwin, London. UK
  3. Dixon, J.B. and S. B. Weed. 1997. Minerals in soil environments. p 467-526. Soil Sci. Soc. Am Madison. Wisconsin, USA
  4. Hwang S.K., J.H. Hwang. D.H. Kim and M. F. Howells. 1992. Volcanic processes on the Songaksan tuff ring and cinder cone, Cheju Isaland, Korea. J. Geo. Soc. Korea 28(1) :110-120(in Korean)
  5. Hwang Sang-Koo. 1993. One-cycle volcanic processes at Udo crater, Korea. J. Korean Inst. Mining Geol. 26(1) :55-65(in Korean)
  6. Inoue. K. 1986. Chemical properties. In Ando Soils in Japan. p 69-98. Kyashu Univ. Press, Fukuoka, Japan
  7. Jackson, M.L. 1975. Soil Chemical analysis-advanced course. p 22-37. Madison. Wisconsin, USA
  8. Joint Committee on Power Diffration Standards. 1974. Selected power diffration data for minerals search manual. p 1-29. JCPDS, Pennsylvania, USA
  9. Kim B.T., D.U. Choi and Y.H. Shin. 1973. A study on the clay minerals of volcanic ash soils in Jeju Island. RDA J. Agri. Sci. 15(3) :15-282(in Korean)
  10. Kim J.J., Y.S. Jang and Y.O. Shin. 1989. Contents of monosaccharides in the hydrolysates of some forestfoil horizons. J. Korean Soc. Soil & Fer. 22(3) :191-196(in Korean)
  11. Kokelaar. P. 1986. Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull. Volcanol. 48 : 275-289 https://doi.org/10.1007/BF01081756
  12. Lietzke, D. A. 1985. Whole Soil Mineralogy-Criteria for Mineralogical Families in soil Taxonomy. In Mineral Classification of Soils. p 17-40. Madison, Wisconsin, USA
  13. Makenzie. R. C, 1970. The differential therm alanalysis. p 299-328. Academic Press, London, UK
  14. Self, S., R. S. J. Sparks, B. Booth and G. L. P. Walker. 1974. The 1973 Heimaey Strombolian deposits, Iceland. Geol. 111 : 534-548
  15. Sheridan, M. F. and K. H. Woheltz. 1983. Hydrovolcanism : basic considerations and review. J. Volcanol Geotherm. Res. 17 :1-29 https://doi.org/10.1016/0377-0273(83)90060-4
  16. Shin J.S. and T. Rene. 1988. Composition and genesis of volcanic ash soil in Jeju Island. Ⅱ. Mineralogy of sand, silt. clay fractions. J. Mineral. Soc. Korea. 1(1) : 40-47 (in Korean)
  17. Shin J.S., P.G. Jung and K.T. Um. 1976. The Characteristic and genesis of polysequum soils in Jeju. J. Korean Soc. Soil & Fer. 9(2) :93-98(in Korean)
  18. Shin Y.H. and H.O. Kim. 1975. Characteristics of volcanic ash soils. J. Korean Soc. Soil & Fer. 8(3) :113-119(in Korean)
  19. Song K.C. and S.H. Yoo. 1991. Andic properties of major soils in Cheju Island Ⅲ. Conditions for formation of Allophane. J. Korean Soc. Soil & Fer. 24(2) :86-96(in Korean)
  20. Wohetz, K.H. and M. F. Sheridan. 1983. Hydrovolcanic explosion. evolution of basaltic tuff rings and tuff cones. Am. J. Sci.. 283 : 385-413 https://doi.org/10.2475/ajs.283.5.385
  21. Wohetz. K.H. and R. C. McQueen. 1984. Experimental studies of hydromagmatic volcanism, In Explosive volcanism : Inception, evolution, and hazards, Studies in geophysics, p 158-169. National Academy Press, Washington, USA