논 토양에서 배수 및 시비조건에 따른 토양특성, 생육 및 도복 관련 형질의 변화

Changes of soil characteristics, rice growth and lodging traits by different fertilization and drainage system in paddy soil

  • 투고 : 2002.05.02
  • 심사 : 2002.06.26
  • 발행 : 2002.06.30

초록

덕평통에서 화봉벼를 재배하여 암거배수시 토양 및 식물체 무기성분, 벼의 도복 관련형질과 수량을 비교 분석한 결과는 다음과 같다. 시험전 토양의 화학성은 암거구가 무암거구보다 유기물, 유효인산, 치환성 칼리 등의 함량이 다소 많았으며 벼 재배기간 동안의 평균 감수심은 암거배수구에서 $15.28mm\;day^{-1}$, 무암거구에서 $7.90mm\;day^{-1}$을 보였으며 시험후 물리성은 토심 20cm 이하에서는 암거구에서 가비중이 낮았고 공극률은 증가하는 경향이었다. 시험후 pH는 표토에서는 암거구가 높았으나 심토에서는 무암거구가 높았고 O.M은 표토, 심토 모두 무암거구가 높았다. Av. $P_2O_5$는 표토에서는 무암거구와 암거구가 비슷하였으나 심토에서는 암거구가 높은 경향이었고 치환성 칼리는 pH와 유사한 경향을 나타내었고 토양 중 $NH_4{^+}-N$은 초기에는 차이가 없었으나 유수형성기 이후에는 암거구가 높았다. 주요 시기별 벼 생육은 분얼기에는 차이가 없었으나 유수형성기 이후에는 무암거구 보다 암거구가 초장, 경수 엽색도 및 건물중이 높은 경향이었고 시비조건간에는 관행과 완효성비료와 비슷한 경향이었고 주요 시기별 식물체 무기성분중 전질소는 전 생육기간 동안 암거구가 높았고 $K_2O$의 함량은 분얼기에는 차이가 없었으나 유수형성기 이후에는 암거구가 높았고 CaO는 큰 차이가 없었으나 출수후 벼 뿌리의 T-N, $P_2O_5$, $K_2O$ 등의 함량이 암거구가 무암거구보다 높았다. 벼의 도복 관련 형질중에서 중심고가 암거구가 무암거구보다 높았고 2, 3절간이 더 신장하였으나 Pulling force는 암거구가 무암거구보다 높게 나타났다. 수량은 암거구의 도복으로 무암거보다 적었으나 암거 무비구의 수량은 무암거 무비구 보다 높아 논토양에서 암거배수시 감비재배를 시사하였다.

The installation of subsurface drainage equipment is required for generalized use of paddy field and to improve soil productivity. The internal drainage of paddy field has improved root condition from the increasing of oxygen supply and removing noxious elements. This experiment was carried out to determine the effects of fertilization and drainage system on soil characteristic, growth and lodging trait of rice in paddy soil. A subsurface drainage system was installed a depth of 0.8m. Three fertilizer treatments were applied : 1) Conventional fertilized plot, 2) Controlled-release fertilized plot, 3) No-fertilized plot. In conventional plot, 110 kg N (as urea 46%), 45 kg P (as fused phosphate 20%) and 57 kg K (as potassium chloride 60%) per hectare fertilizers were applied. Controlled-release fertilizer was applied by 70% of N compared to the conventional plot. During the rice cropping, the water depth decrease was two times higher in subsurface drainage(SD) plot than non-drained(ND) plot. After harvesting of rice, the bulk density of sub-soil(10-20cm depth) was lower in SD plot than ND plot. After the experiment, the surface soil pH was high at SD plot but sub-soil was high at ND plot. Organic matter content was higher in all soil layer for SD plot than fro ND plot. Available $P_2O_5$ was not different between SD and ND plot for surface soil, but was high for SD plot for sub soil. The $NH_4{^+}-N$ content of soil, shoot dry matter, total nitrogen and $K_2O$ of rice plant were greater after panicle formation stage in SD plot. Total nitrogen content, $P_2O_5$ and $K_2O$ of rice root were high in SD plot after heading. Though the gravity center and 3rd internode length were greater, pulling force of rice root was higher in SD plot than ND plot. Rice yield in SD plot were low at conventional and controlled-release fertilized plot because of the greater field lodging, but yield in SD plot was high at no-fertilized plot. This study indicates that the fertilization level should be decrease on subsurface drainage system for rice cropping.

키워드

참고문헌

  1. Chang, J. K.. H. Y. Kim. U. S, Yeo, S. J. Lim. K. Y. Lee, H. C. Choi. S. C. Kim and J. K. Sohn. 1999. Varietal difference and factor analysis of lodging tolerance in wet-seeded rice. Korean J. Breed 31(3):232-238
  2. Chung, S. O. 1995. Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material. Journal of the KSAE. Vol. 37 (5): 53-61
  3. Houng, K.H. 1981. A theoretical evaluation of the influence of percolation rate on the thickness of the oxidizing zone of paddy soils. Proc. Natl. Sci. Counc. ROC(A). 5(4) : 274-278
  4. Kim, J. G., G. J. Park. G. Y. Kim and M. S. Han. 1996. Growth and yield performance of selected forage crops cultivated on imperfectly drained paddy field under subsurface drainage by PVC pipes. J. Korean Grassl. Sci. Vol. 13(3):219-224
  5. Kim. K. S. and Y. W. Kim. 1983. Studies on the leaching of the constituents in paddy soil. J. Korean Soc. Soil. Sci. Fert. Vol 16(4):311-317
  6. Klute, A. 1986. Methods of soil analysis : part 1. physical and mineralogical methods. Amer. Soc. Agron. Inc. Madison USA pp 1188
  7. Oh, J. S., K. S. You and Y. H. shin. 1974. Studies on percolation rate on main paddy soils. Res. Rept. RDA(S & F) 16 : 27-34
  8. O' Toole. J. C and Soemartono. 1981. Evaluation of a simple technique for characterizing rice root systems in relation to drought resistance. Euphytica 30 : 283-290 https://doi.org/10.1007/BF00033989
  9. Ramasamy. S.. H. F. M. ten Berge and S. Purushothaman. 1997. Yield formation in rice in response to drainage and nitrogen application. Field crops research 51. 65-82 https://doi.org/10.1016/S0378-4290(96)01039-8
  10. RDA(Rural Development Administration). 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology. RDA. Suwon
  11. RDA(Rural Development Administration). 1992. Report of soil survey in Korea, 2nd. edition. National Institute of AgricuItural Science and Technology, RDA. Suwon
  12. RDA(Rural Development Administration). 1995. Standard methods for agricultural experiment
  13. Shin, W. K. 1984. Influence of percolation rate on nutrient uptake and yield of paddy rice. J. Korean Soc. Soil Sci. Fert. Vol. 17(3):218-223
  14. Youn, K. H., J. S. Shin. D. C. Noh, Y. H. Kim. H. S. Lee and K. T. Um. 1991. The studies on the calculation of water consumption by soil characteristics in paddy soil. Res. Rept. RDA(S & F) 33(3):63-67