• Title/Summary/Keyword: secondary batteries

Search Result 391, Processing Time 0.026 seconds

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

Characterizations of Commercial Bipolar Membranes for Efficient Electrochemical LiOH Production (효율적인 전기화학적 LiOH 생산을 위한 상용 바이폴라막 특성 분석)

  • Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Recently, as the demand for secondary batteries for electric vehicles has rapidly increased, the efficient production of lithium compounds is attracting great attention. Bipolar membrane electrodialysis (BPED) is known as an eco-friendly, economical, and efficient electrochemical lithium compound production process. Since the efficiency of the BPED depends on the performance of the bipolar membrane (BPM), the selection of the BPM is very important. In this study, the characteristics of BPMs suitable for the BPED for electrochemical LiOH production were derived by comparative analyses of BP-1E (Astom) and FBM (Fumatech), which are the most widely used commercial BPMs in the world. Through systematical evaluation, it was confirmed that reducing membrane ion transfer resistance and co-ion leakage among the characteristics of BPM is the most important, and BP-1E has better performance than FBM in this respect.

Extractive Metallurgy of Lithium (리튬의 제련기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.3-15
    • /
    • 2022
  • Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

Green Synthesis of Colloidal and Nanostructured MnO2 by Solution Plasma Process (용액 플라즈마를 이용한 콜로이드 및 나노 구조 MnO2의 친환경 합성)

  • Hyemin Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.315-322
    • /
    • 2023
  • In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4- (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite-MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

Waiting Time and Sojourn Time Analysis of Discrete-time Geo/G/1 Queues under DT-policy (DT-정책 하에서 운영되는 이산시간 Geo/G/1 시스템의 대기시간과 체재시간 분석)

  • Se Won Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.69-80
    • /
    • 2024
  • In this paper, we studied a discrete-time queuing system that operates under a mixed situation of D-policy and T-policy, one of the representative server control policies in queuing theory. A single server serves customers arriving by Bernoulli arrival process on a first-in, first-out basis(FIFO). If there are no customers to serve in the system, the server goes on vacation and returns, until the total service time (i.e., total amount of workload) of waiting customers exceeds predetermined workload threshold D. The operation of the system covered in this study can be used to model the efficient resource utilization of mobile devices using secondary batteries. In addition, it is significant in that the steady state waiting time and system sojourn time of the queuing system under a flexible mixed control policy were derived within a unified framework.

Cell Balancing to Improve Safety and Performance against Unbalanced Voltage between Secondary Battery Cells (2차전지 셀(Cell) 간의 불균형 전압 발생에 대한 안전성 및 성능향상을 위한 셀 밸런싱(Cell Balancing))

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.141-146
    • /
    • 2024
  • Energy Storage System(ESS) have been developed to store and efficiently utilize energy, transitioning from the traditional method of producing and consuming energy immediately via fossil fuels and generators. With the advancement of this technology, Battery Management System(BMS) that manage Li-ion batteries at the cell level play a crucial role in enhancing battery performance, lifespan, and safety. Among the BMS functions, cell balancing, which aligns the imbalanced voltages of cells, is essential for optimizing capacity in devices like ESS. It ensures all cells maintain the same voltage and capacity, improving performance and output stability. Therefore, this paper examines the operational characteristics of the cell balancing method within BMS when charging an imbalanced Li-ion battery.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

A Relation between the Electrochemical Behaviors and Morphology of Co3O4 and Ni-Co3O4 Composites as Anode Materials for Li Ion Secondary Batteries (리툼 이차 전지용 Co3O4 및 Ni-Co3O4 복합물의 전기화학적 특성 및 표면 형상의 관계)

  • Kang, Yong-Mook;Lee, Yong-Ju;Song, Min-Sang;Park, Min-Sik;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.217-228
    • /
    • 2003
  • Li 이차 전지 음극용 활물질인 $Co_3O_4$의 초기 충방전 효율을 향상시키기 위해 chemical reduction method나 mechanical milling법을 이용하여 $Co_3O_4$에 Ni을 첨가하여 $Ni-Co_3O_4$, 복합물을 제조하였다. 그 결과 초기 충방전 효율이 약 69%에 불과한 $Co_3O_4$에 비해 mechanical milling법을 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 79%이상의 대폭 향상된 초기 충방전 효율 특성을 나타내었다. 하지만 chemical reduction method를 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 71%의 초기 충방전 효율 특성만을 나타내었다. SEM 분석을 통해 각 물질의 표면 형상을 관찰한 결과 mechanical milling법과 chemical reduction method를 통해 제조된 $Ni-Co_3O_4$ 복합물에서는 $Co_3O_4$ 표면에 분포된 Ni의 균일성의 차이가 존재하였다. $Co_3O_4$$Li_2O$의 분해, 형성에 의해 충방전되고 Ni이 $Li_2O$의 분해를 촉진시키는 효과를 가지고 있음을 고려할 때 이러한 균일성의 차이는 결국 Ni 과 $Co_3O_4$ 사이의 접촉면적의 차이로 이어져 $Ni-Co_3O_4$ 복합물의 초기 충방전 효율 특성이 그 제조 방법에 따라 달라지는 것으로 보인다.

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.