DOI QR코드

DOI QR Code

Characterizations of Commercial Bipolar Membranes for Efficient Electrochemical LiOH Production

효율적인 전기화학적 LiOH 생산을 위한 상용 바이폴라막 특성 분석

  • Song, Hyeon-Bee (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 송현비 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2022.10.14
  • Accepted : 2022.10.24
  • Published : 2022.10.31

Abstract

Recently, as the demand for secondary batteries for electric vehicles has rapidly increased, the efficient production of lithium compounds is attracting great attention. Bipolar membrane electrodialysis (BPED) is known as an eco-friendly, economical, and efficient electrochemical lithium compound production process. Since the efficiency of the BPED depends on the performance of the bipolar membrane (BPM), the selection of the BPM is very important. In this study, the characteristics of BPMs suitable for the BPED for electrochemical LiOH production were derived by comparative analyses of BP-1E (Astom) and FBM (Fumatech), which are the most widely used commercial BPMs in the world. Through systematical evaluation, it was confirmed that reducing membrane ion transfer resistance and co-ion leakage among the characteristics of BPM is the most important, and BP-1E has better performance than FBM in this respect.

최근 전기자동차용 이차전지 등의 수요가 급증하면서 효율적인 리튬 화합물의 생산이 큰 주목을 받고 있다. 바이폴라막 전기투석은 친환경적이며 경제성 및 효율성이 우수한 전기화학적 리튬 화합물 생산공정으로 알려져 있다. 바이폴라막 전기투석 공정의 효율은 바이폴라막의 성능에 의해 좌우되기 때문에 바이폴라막의 선택이 매우 중요하다. 본 연구에서는 세계적으로 가장 널리 사용되고 있는 대표적인 상용 BPM인 Astom사의 BP-1E 및 Fumatech사의 FBM을 비교 분석함으로써 전기화학적 LiOH 생산을 위한 BPED 공정에 적합한 BPM의 특성을 도출하고자 하였다. 체계적인 평가를 통해 BPM의 특성중 막의 이온전달저항 및 co-ion leakage를 줄이는 것이 가장 중요하고 이러한 관점에서 BP-1E가 FBM보다 더 우수한 성능을 가지고 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 2021년도 상명대학교 교내연구과제 지원을 받아 수행되었음(2021-A000-0295).

References

  1. S. Bunani, K. Yoshizuka, S. Nishihaman, M. Arda, and N. Kabay, "Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions", Desalination, 424, 37-44 (2017). https://doi.org/10.1016/j.desal.2017.09.029
  2. X. Chen, X. Ruan, S. E. Kentish, G. Li, T. Xu, and G. Q. Chen, "Production of lithium hydroxide by electrodialysis with bipolar membranes", Sep. Pur. Technol., 274, 119026 (2021). https://doi.org/10.1016/j.seppur.2021.119026
  3. X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, and J. Li, "Membrane-based technologies for lithium recovery from water lithium resources: A review", J. Membr. Sci., 591, 117317 (2019). https://doi.org/10.1016/j.memsci.2019.117317
  4. B. Swain, "Recovery and recycling of lithium: a review", Sep. Pur. Technol., 172, 388-403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
  5. S. H. Park, J. H. Kim, S. J. Moon, J. T. Jung, H. H. Wang, A. Ali, C. A. Quist-Jensen, F. Macedonio, E. Drioli, and Y. M. Lee, "Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration", J. Membr. Sci., 598, 117683 (2020). https://doi.org/10.1016/j.memsci.2019.117683
  6. L. T. Peiro, G. V. Mendez, and R. U. Ayres, "Lithium: Sources, production, uses, and recovery outlook", JOM, 65, 986-996 (2013). https://doi.org/10.1007/s11837-013-0666-4
  7. Xi. Zeng, M. Li, D. A. El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, and K. Amine, "Commercialization of lithium battery technologies for electric vehicles", Adv. Energy Mater., 9, 1900161 (2019). https://doi.org/10.1002/aenm.201900161
  8. C. A. Quist-Jensen, A. Ali, E. Drioli, and F. Macedonio, "Perspectives on mining from sea and other alternative strategies for minerals and water recovery-the development of novel membrane operations", J. Taiwan Inst. Chem. Eng., 94, 129-134 (2019). https://doi.org/10.1016/j.jtice.2018.02.002
  9. J.-M. A. Juve, F. M. S. Christensen, Y. Wang, and Z. Wei, "Electrodialysis for metal removal and recovery: A review", Chem. Eng. J., 435, 134857 (2022). https://doi.org/10.1016/j.cej.2022.134857
  10. J. R. Davis, Y. Chen, J. C. Baygents, and J. Farrell, "Production of acids and bases for ion exchange regeneration from dilute salt solutions using bipolar membrane electrodialysis", ACS Sustainable Chem. Eng., 3, 2337-2342 (2015). https://doi.org/10.1021/acssuschemeng.5b00654
  11. J.-H. Kim, S. Ryu, and S.-H. Moon, "The fabrication of ion exchange membrane and its application to energy systems, Membr. J., 30, 79-96 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  12. C. Jiang, Y. Wang, Q. Wang, H. Feng, and T. Xu, "Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)", Ind. Eng. Chem. Res., 53, 6103 -6112 (2014). https://doi.org/10.1021/ie404334s
  13. R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021). https://doi.org/10.1016/j.memsci.2020.118538
  14. Y.-J. Choi, J.-M. Park, K.-H. Yeon, and S.-H. Moon, "Electrochemical characterization of poly(vinyl alcohol)/formyl methyl pyridinium (PVA-FP) anion-exchange membranes", J. Membr. Sci., 250, 295-304 (2005). https://doi.org/10.1016/j.memsci.2004.10.034
  15. Y. Zhao, J. Pan, H. Yu, D. Yang, J. Li, L. Zhuang, Z. Shao, and B. Yi, "Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application", Int. J. Hydrog. Energy, 38, 1983-1987 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.055
  16. B. S. Kim, S. C. Park, D.-H. Kim, G. H. Moon, J. G. Oh, J. Jang, M.-S. Kang, K. B. Yoon, and Y. S. Kang, "Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting", Small, 16, 2002641 (2020). https://doi.org/10.1002/smll.202002641
  17. H.-B. Song, H.-N. Moon, and M.-S. Kang, "Preparation and electrochemical applications of pore-filled ion-exchange membranes with well-adjusted cross-linking degrees: Part II. Reverse electrodialysis", Membr. J., 27, 441-448 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.441
  18. H. Strathmann, J. J. Krol, H. J. Rapp, and G. Eigenberger, "Limiting current density and water dissociation in bipolar membranes", J. Membr. Sci., 125, 123-142 (1997). https://doi.org/10.1016/S0376-7388(96)00185-8
  19. K. Venugopal and S. Dharmalingam, "Composite ion exchange membrane based electrodialysis cell for desalination as well as acid and alkali productions", Int. J. Trend Res. Dev., 3, 631-640 (2016).
  20. Z. Yan, L. Zhu, Y. C. Li, R. J. Wycisk, P. N. Pintauro, M. A. Hickner, and T. E. Mallouk, "The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes", Energy Environ. Sci., 11, 2235-2245 (2016).