DOI QR코드

DOI QR Code

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries

저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향

  • Whang, Tae Kyung (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji Hong (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 황태경 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 김지홍 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 임지선 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 강석창 (한국화학연구원(KRICT) C1가스탄소융합연구센터)
  • Received : 2020.12.09
  • Accepted : 2021.01.13
  • Published : 2021.02.10

Abstract

In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.

본 연구에서는 저온 열처리 탄소의 물리·화학적 특성이 이차전지 음극재로서의 전기화학적 거동에 미치는 영향에 대하여 고찰하였다. 석유계 핏치의 코크스화를 위하여 600 ℃ 열처리를 수행하였으며 제조된 코크스는 700~1500 ℃로 탄화 온도를 달리하여 저온 열처리 탄소 음극재로 제조되었다. 탄소 음극재의 물리 화학적 특성은 N2 흡·탈착 등온선, X-ray diffraction (XRD), 라만 분광(Raman spectroscopy), 원소 분석 등을 통하여 확인하였으며,저온 열처리 탄소의 음극 특성은 반쪽 전지를 통한 용량, 초기 쿨롱 효율(ICE, initial Coulomb efficiency), 율속, 수명 등의 전기화학적 특성을 통하여 고찰하였다. 저온 열처리 탄소의 결정 구조는 1500 ℃ 이하에서 결정자의 크기와 진밀도가 증가하였으며 비표면적은 감소하였다. 저온 열처리 탄소의 물리화학적 특성 변화에 따라 음극재의 전기화학 특성이 변화하였는데 수명 특성은 H/C 원소 비, 초기 쿨롱 효율은 비표면적, 율속 특성은 진밀도의 특성에 기인하는 것으로 판단되었다.

Keywords

References

  1. Y. J. Han, Y. J. Kwon, J. U. Lee, and J. S. Im, Recent progress on carbon materials for lithium-ion rechargeable batteries, Polym. Sci. Tech., 28, 195-200 (2017).
  2. K. Zaghib, F. Brochu, A. Guerfi, and K. Kinoshita, Effect of particle size on lithium intercalation rates in natural graphite, J. Power Source, 103, 140-160 (2001). https://doi.org/10.1016/S0378-7753(01)00853-9
  3. M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, J. Phys. Chem., 117, 1257-1267 (2013).
  4. Y. Nishi, Lithium ion secondary batteries; Past 10 years and the future, J. Power Sources, 100, 101-106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
  5. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, and S. Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage, Adv. Energy Mater., 21, 970-975 (2012).
  6. H. Hu and G. Chen, Electrochemically modified graphite nano-sheets and their nanocomposite films with poly(vinyl alcohol), Polym. Compos, 31, 1770-1775 (2010). https://doi.org/10.1002/pc.20968
  7. G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization, J. Appl. Polym. Sci., 82, 2506-2513 (2001). https://doi.org/10.1002/app.2101
  8. J. H. Lee, S. K. Lee, U. Y. Paik, and Y. M. Choi, Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance, J. Power Sources, 147, 249-255 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.022
  9. H. Azuma, H. Imoto, S. I. Yamada, and K. Sekai, Advanced carbon anode materials for lithium ion cells, J. Power Sources, 81, 1-7 (1999). https://doi.org/10.1016/S0378-7753(99)00122-6
  10. J. Robertson, Amorphous carbon, Adv. Phys., 35, 317-374 (1986). https://doi.org/10.1080/00018738600101911
  11. Y. Li, L. Mu, Y. S. Hu, H. Li, L. Chen, and X. Huang, Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries, Energy Storage Mater., 2, 139-145 (2016). https://doi.org/10.1016/j.ensm.2015.10.003
  12. Y. Li, Y. S. Hu, H. Li, L. Chen, and X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, J. Mater. Chem. A, 4, 96-104 (2016). https://doi.org/10.1039/C5TA08601A
  13. Y. Liu, J. S. Xue, T. Zheng, and J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34, 193-200 (1996). https://doi.org/10.1016/0008-6223(96)00177-7
  14. S. M. Jafari, M. Khosravi, and M. Mollazadeh, Nanoporous hard carbon microspheres as anode active material of lithium ion battery, Electrochim. Acta, 203, 9-20 (2016). https://doi.org/10.1016/j.electacta.2016.03.028
  15. Y. Abe, T. Saito, and S. Kumagai, Effect of prelithiation process for hard carbon negative electrode on the rate and cycling behaviors of lithium-ion batteries, Batteries, 4, 1-16 (2018).
  16. R. Vali, A. Janes, T. Thomberg, and E. Lust, Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries, Electrochim. Acta, 253, 536-544 (2017). https://doi.org/10.1016/j.electacta.2017.09.094
  17. Y. Sato, K. Nagayama, Y. Sato, and T. Takamura, A promising active anode material of Li-ion battery for hybrid electric vehicle use, J. Power Sources, 189, 490-493 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.112
  18. N. N. Sinha, T. H. Marks, H. M. Dahn, A. J. Smith, J. C. Burns, D. J. Coyle, J. J. Dahn, and J. R. Dahn, The rate of active lithium loss from a soft carbon negative electrode as a function of temperature, time and electrode potential, J. Electrochem. Soc., 159, 1672-1681 (2012).
  19. S. E. Lee, J. H. Kim, Y. S. Lee, B. C. Bai, and J. S. Im, Effect of crystallinity and particle size on coke-based anode for lithium ion batteries, Carbon Lett., 30, 545-553 (2020). https://doi.org/10.1007/s42823-020-00124-2
  20. N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Large hysteresis during lithium insertion into and extraction from high-capacity disordered carbons, J. Electrochem. Soc., 145, 478-482 (1998). https://doi.org/10.1149/1.1838288
  21. G. Savage, Carbon-Carbon Composites, 2nd, 1-10, Woodhead Publishing, Sawston, England (1993).
  22. S. Otani, On the carbon fiber from the molten pyrolysis products, Carbon, 3, 31-34 (1965). https://doi.org/10.1016/0008-6223(65)90024-2
  23. K. I. Kamiya, M. Inagaki, M. Mizutani, and T. Noda, Effect of pressure on graphitization of carbon, Bull. Chem. Soc. Jpn., 41, 2169-2172. (1968). https://doi.org/10.1246/bcsj.41.2169
  24. A. Oberlin, J. N. Rouzaud, and J. Goma, Techniques d'etude des structures et textures (microtextures) des materiaux carbones, J. Chim. Phys., 81, 701-710 (1984). https://doi.org/10.1051/jcp/1984810701
  25. J. Tebo, McGraw-Hill Encyclopedia of Chemistry, 2nd, 455-459, McGraw-Hill Education, NY, USA (1993).
  26. M. R. Ammar, N. Galy, J. N. Rouzaud, N. Toulhoat, C. E. Vaudey, P. Simon, and N. Moncoffre, Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing, Carbon, 95, 364-373 (2015). https://doi.org/10.1016/j.carbon.2015.07.095
  27. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 161, 359-372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094
  28. H. Marsh and J. Griffiths, New processes and new applications, Ext. Abst. of International Symposium on Carbon, Toyohashi, Japan (1982).
  29. M. Inagaki, and K Feiyu, Carbon Materials Science and Engineering, Tsinghua Univ. Press., 37-40, Beijing, China (2006).
  30. P. L. Walker and P. A. Thrower, Chemistry and Physics of Carbon, 149-151, CRC Press, Florida, USA (1993).
  31. I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 75, 214-222 (1998). https://doi.org/10.1016/S0378-7753(98)00101-3
  32. B. H. Kim, J. H. Kim, J. G. Kim, and J. S. Im, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem., 45, 99-104 (2017). https://doi.org/10.1016/j.jiec.2016.09.008
  33. T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, and T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon, 125, 146-155 (2017). https://doi.org/10.1016/j.carbon.2017.09.049
  34. P. Zhou and P. Papanek, High capacity carbon anode materials: Structure, hydrogen effect, and stability, J. Power Sources, 68, 296-300 (1997). https://doi.org/10.1016/S0378-7753(96)02563-3
  35. K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A mechanism of lithium storage in disordered carbons, Science, 264, 556-558. (1994). https://doi.org/10.1126/science.264.5158.556
  36. A. Claye and J. E. Fischer, Short-range order in disordered carbons: Where does the Li go?, Electrochim. Acta, 45, 107-120 (1999). https://doi.org/10.1016/S0013-4686(99)00197-8
  37. K. Leung and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 12, 6583-6586 (2010). https://doi.org/10.1039/b925853a
  38. T. Ishii, S. Kashihara, Y. Hoshikawa, J. I. Ozaki, N. Kannari, K. Takai, T. Enoki, and T. Kyotani, A quantitative analysis of carbon edge sites and an estimation of graphene sheet size in high-temperature treated, non-porous carbons, Carbon, 80, 135-145 (2014). https://doi.org/10.1016/j.carbon.2014.08.048
  39. R. Schaublin, J. Henry, and Y. Dai, Helium and point defect accumulation: (i) microstructure and mechanical behavior, C. R. Phys., 9, 389-400 (2008). https://doi.org/10.1016/j.crhy.2008.01.003
  40. K. kaneko and C. Ishii, Superhigh surface area determination of microporous solids, Colloid Surf., 67, 203-212 (1992). https://doi.org/10.1016/0166-6622(92)80299-H
  41. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
  42. T. Zheng, A. S. Gozdz, and G. G. Amatucci, Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures, J. Electrochem. Soc., 146, 4014-4018 (1999). https://doi.org/10.1149/1.1392585
  43. C. Heubner, M. Schneider, and A. Michaelis, Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries, Adv. Energy Mater., 10, 1-7 (2020).
  44. D. W. Chung, M. Ebner, D. R. Ely, V. Wood, and R. E. Garcia, Validity of the Bruggeman relation for porous electrodes, Model. Simul. Mater. Sci. Eng., 21, 1-17 (2013).
  45. D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 161, 359-372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094
  46. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 26, 725-763 (1998).
  47. P. Bai, J. Li, F. R. Brushett, and M. Z.Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221-3229 (2016). https://doi.org/10.1039/C6EE01674J
  48. A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput. Mater., 4, 1-26 (2018). https://doi.org/10.1038/s41524-017-0060-9
  49. T. Zheng, W. R. McKinnon, and J. R. Dahn, Hysteresis during lithium insertion in hydrogen-containing carbons, J. Electrochem. Soc., 143, 2137-2145 (1996). https://doi.org/10.1149/1.1836972
  50. Z. Jiang, M. Alamgir, and K. M. Abraham, The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells, J. Electrochem. Soc., 142, 333-340 (1995). https://doi.org/10.1149/1.2043997
  51. Z. Cao, B. Li, and S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays, Adv. Mater., 31, 1-6 (2019).
  52. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 26, 725-763 (1998).
  53. J. Shim and K. A. Striebel, Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries, J. Power Sources, 119, 934-937 (2003). https://doi.org/10.1016/S0378-7753(03)00235-0