• Title/Summary/Keyword: second-order equation

Search Result 900, Processing Time 0.024 seconds

A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM WITH DISCONTINUOUS SOURCE TERM

  • CHANDR, M.;SHANTHI, V.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.495-508
    • /
    • 2016
  • A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

Second order of average current nodal expansion method for the neutron noise simulation

  • Poursalehi, N.;Abed, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1391-1402
    • /
    • 2021
  • The aim of this work is to prepare a neutron noise calculator based on the second order of average current nodal expansion method (ACNEM). Generally, nodal methods have the ability to fulfill the neutronic analysis with adequate precision using coarse meshes as large as a fuel assembly size. But, for the zeroth order of ACNEM, the accuracy of neutronic simulations may not be sufficient when coarse meshes are employed in the reactor core modeling. In this work, the capability of second order ACNEM is extended for solving the neutron diffusion equation in the frequency domain using coarse meshes. For this purpose, two problems are modeled and checked including a slab reactor and 2D BIBLIS PWR. For validating of results, a semi-analytical solution is utilized for 1D test case, and for 2D problem, the results of both forward and adjoint neutron noise calculations are exploited. Numerical results indicate that by increasing the order of method, the errors of frequency dependent coarse mesh solutions are considerably decreased in comparison to the reference. Accordingly, the accuracy of second order ACNEM can be acceptable for the neutron noise calculations by using coarse meshes in the nuclear reactor core.

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

THREE SOLUTIONS FOR A SECOND-ORDER STURM-LIOUVILLE EQUATION WITH IMPULSIVE EFFECTS

  • HAGHSHENAS, HADI;AFROUZI, GHASEM A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.407-414
    • /
    • 2020
  • In this article, a second-order Sturm-Liouville problem with impulsive effects and involving the one-dimensional p-Laplacian is considered. The existence of at least three weak solutions via variational methods and critical point theory is obtained.

OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DIFFERENCE EQUATIONS WITH 'SUMMATION SMALL' COEFFICIENT

  • KANG, GUOLIAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.245-256
    • /
    • 2005
  • We consider the second-order nonlinear difference equation (1) $$\Delta(a_nh(x_{n+1}){\Delta}x_n)+p_{n+1}f(x_{n+1})=0,\;n{\geq}n_0$$ where ${a_n},\;{p_n}$ are sequences of integers with $a_n\;>\;0,\;\{P_n\}$ is a real sequence without any restriction on its sign. hand fare real-valued functions. We obtain some necessary conditions for (1) existing nonoscillatory solutions and sufficient conditions for (1) being oscillatory.

BOUNDED OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL TYPE DIFFERENCE EQUATIONS

  • Thandapani, E.;Arul, R.;Raja, P.S.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.79-90
    • /
    • 2004
  • In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation ${\Delta}^2(y_n\;-\;py_{n-{\kappa}})\;-\;q_nf(y_{n-e})\;=\;0,\;n\;{\in}\;N$ to be oscillatory. Examples are provided to illustrate the results.

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y"+P(x)y=f(x)

  • Zaghrout, A.A.S.;Ragab, A.A.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 1987
  • This paper is a study of the oscillatory and asymptotic behaviour of solutions of the second order nonhomogeneous linear differential equation y"+P(x)y=f(x), and the associated homogeneous equation. Conditions are determined, under which the nonhomogeneous equation is oscillatory if and only if the homogeneous equation is oscillatory.

  • PDF