References
- G.A. Afrouzi, A. Hadjian and S. Heidarkhani, Infinitely Many Solutions for a Mixed Doubly Eigenvalue Boundary Value Problem, Mediterr. J. Math. 10 (2013), 1317-1331. https://doi.org/10.1007/s00009-013-0243-7
- G.A. Afrouzi, A. Hadjian and V. Radulescu, A variational approach of Sturm-Liouville problems with the nonlinearity depending on the derivative, Bound. Value Probl. (2015), 1-17.
- D. Averna, R. Salvati, Three solutions for a mixed boundary value problem involving the one-dimensional p-Laplacian, J. Math. Anal. Appl. 298 (2004), 245-260. https://doi.org/10.1016/j.jmaa.2004.05.012
- L. Bai, B. Dai, Three solutions for a p-Laplacian boundary value problem with impulsive effects, Appl. Math. Comput. 217 (2011), 9895-9904. https://doi.org/10.1016/j.amc.2011.03.097
- G. Bonanno, A. Chinni, Existence of three solutions for a perturbed two-points boundary value problem, Appl. Math. Lett. 23 (2010), 807-811. https://doi.org/10.1016/j.aml.2010.03.015
- G. Bonanno, G. Riccobono, Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. comput. 210 (2009), 294-297. https://doi.org/10.1016/j.amc.2008.12.081
- G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1-10. https://doi.org/10.1080/00036810903397438
- H. Chen, J. Sun, An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput. 217 (2010), 1863-1869. https://doi.org/10.1016/j.amc.2010.06.040
- G. D;Agui, Existence results for a mixed boundary value problem with Sturm-Liouville equation, Adv. Pure Appl. Math. 2 (2011), 237-248. https://doi.org/10.1515/APAM.2010.043
- V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, Series Modern Appl. Math., Vol. 6, World Scientific, Teaneck, NJ, 1989.
- B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226. https://doi.org/10.1007/s000130050496
- Y. Tian, W. Ge, Second-order Sturm-Liouville boundary value problem involving the one-dimensional p-Laplacian, Rocky Mountain J. Math. 38 (2008), 309-327. https://doi.org/10.1216/RMJ-2008-38-1-309
- Y. Tian, W. Ge, Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc. 51 (2008), 509-527. https://doi.org/10.1017/S0013091506001532
- J. Xie, Z. Lou, Multiple solutions for a second-order impulsive Sturm-Liouville equation, Abstr. Appl. Anal. (2013), 1-6.
- E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer, Berlin, 1990.