DOI QR코드

DOI QR Code

EFFECT OF FEAR ON A MODIFIED LESLI-GOWER PREDATOR-PREY ECO-EPIDEMIOLOGICAL MODEL WITH DISEASE IN PREDATOR

  • PAL, A.K. (Department of Mathematics, Seth Anandram Jaipuria College)
  • Received : 2020.05.05
  • Accepted : 2020.07.10
  • Published : 2020.09.30

Abstract

The anti-predator factor due to fear of predator in eco- epidemiological models has a great importance and cannot be evaded. The present paper consists of a modified Lesli-Gower predator-prey model with contagious disease in the predator population only and also consider the fear effect in the prey population. Boundedness and positivity have been studied to ensure the eco-epidemiological model is well-behaved. The existence and stability conditions of all possible equilibria of the model have been studied thoroughly. Considering the fear constant as bifurcating parameter, the conditions for the existence of limit cycle under which the system admits a Hopf bifurcation are investigated. The detailed study for direction of Hopf bifurcation have been derived with the use of both the normal form and the central manifold theory. We observe that the increasing fear constant, not only reduce the prey density, but also stabilize the system from unstable to stable focus by excluding the existence of periodic solutions.

Keywords

References

  1. R.M. Anderson and R.M. May, Regulation and stability of host-parasite population interactions: I. Regulatory processes, Journal of Animal Ecology 47 (1978), 219-247. https://doi.org/10.2307/3933
  2. M.A. Aziz-Alaoui and M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II schemes, Appl. Math. Lett. 16 (2003), 1069-1075. https://doi.org/10.1016/S0893-9659(03)90096-6
  3. G. Birkhoff and G.C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.
  4. J. Carr, Applications of Center Manifold Theory, Springer, New York, 1982.
  5. J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis 36 (1999), 747-766. https://doi.org/10.1016/S0362-546X(98)00126-6
  6. S. Creel, D. Christianson, S. Liley, and J.A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science 315 (2007), pp 960. https://doi.org/10.1126/science.1135918
  7. Das, K.P., Disease-induced chaotic oscillations and its possible control in a predator-prey system with disease in predator, Differ. Equ. Dyn. Syst. (2015), doi:10.1007/s12591-015-0249-7.
  8. H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
  9. H.I. Freedman and S. Ruan, Uniform Persistence in Functional Differential Equations, J. Diff. Eq. 115 (1995), 173-192. https://doi.org/10.1006/jdeq.1995.1011
  10. T.C. Gard and T.G. Hallam, Persistence in food web-1, Lotka- Volterra food chains, Bull. Math. Bio. 41 (1979), 302-315.
  11. D. Greenhalgh and M. Haque, A predator-prey model with disease in the prey species only, Math. Meth. Appl. Sci. 30 (2006), 911-929, DOI: 10.1002/mma.815.
  12. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, NY, 1983.
  13. R. Gupta and P. Chandra, Bifurcation analysis of modified Lesli-Gower predator-prey model with Michaelis-Menten type harvesting, J. Math. Anal. Appl. 398 (2013), 278-295. https://doi.org/10.1016/j.jmaa.2012.08.057
  14. K.P. Hadeler and H.I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol. 27 (1989), 609-631. https://doi.org/10.1007/BF00276947
  15. L. Han, Z. Ma and H.W. Hethcote, Four predator prey models with infectious disease, Math. Comp. Model 34 (2001), 849-858. https://doi.org/10.1016/S0895-7177(01)00104-2
  16. M. Haque, S. Sarwardi, S. Preston and E. Venturino, Effect of delay in a Lotka-Volterra type predator-prey model with a transmission disease in the predator species, Math. Biosci. 234 (2011), 47-57. https://doi.org/10.1016/j.mbs.2011.06.009
  17. H. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol. 66 (2004), 259-268. https://doi.org/10.1016/j.tpb.2004.06.010
  18. F. Hua, K.E. Sieving, R.J. Fletcher, et al., Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance, Behav. Ecol. 25 (2014), 509-519. https://doi.org/10.1093/beheco/aru017
  19. T.K. Kar, A. Gorai and S. Jana, Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide, J. Theor. Biol. 310 (2012), 187-198. https://doi.org/10.1016/j.jtbi.2012.06.032
  20. P.H. Lesli, A Stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika 45 (1958), 16-31. https://doi.org/10.1093/biomet/45.1-2.16
  21. P.H. Lesli, Some further notes on the use of matrices in population mathematics, Biometrika 35 (1948), 213-245. https://doi.org/10.1093/biomet/35.3-4.213
  22. A. Maiti and G.P. Samanta, Deterministic and stochastic analysis of a prey-dependent predator-prey system, Int. J. Math. Educ. Sci. Technol. 36 (2005), 65-83. https://doi.org/10.1080/00207390412331314980
  23. A. Mondal, A.K. Pal and G.P. Samanta, On the dynamics of evolutionary Lesli-Gower predator-prey eco-epidemiological model with disease in predator, Ecol. Genet. Genom. 10 (2019), 100034. doi: 10.1016/j.egg.2018.11.002.
  24. A. Nindjin, M. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Lesli-Gower and Holling-type II schemes with time delay, Nonlinear Anal. R. World Appl. 7 (2006), 1104-1118. https://doi.org/10.1016/j.nonrwa.2005.10.003
  25. J.L. Orrock and R.J. Fletcher, An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey, Proceed. of the Royal Soc. of London B: Biol. Sc. 281 (2014), 1784, 2014039. doi: 10.1098/rspb.2014.0391.
  26. P. Panday, N, Pal, S. Samanta, et. al., Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurc. Chaos Appl. Sci. Eng. 28 (2018), 1850009. doi: 10.1142/S0218127418500098.
  27. A.K. Pal and G.P. Samanta, Stability analysis of an eco-epidemiological model incorpo-rating a prey refuge, Nonlinear Anal. Model. Contrl. 15 (2010), 473-491. https://doi.org/10.15388/NA.15.4.14319
  28. A.K. Pal and G.P. Samanta, A Ratio-dependent Eco-epidemiological Model Incorporating a Prey Refuge, Univ. J. Applied Maths. 1 (2013), 86-100, doi: 10.13189/ujam.2013.010208.
  29. S. Pal, S. Majhi, S. Mandal, et. al., Role of fear in a predator-prey model with Beddington-DeAngelis functional response, Z. Naturforsh. A 74 (2019), 301-327.
  30. L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, NY, 2001.
  31. S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J Appl. Math. 61 (2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
  32. S. Sarwardi, M. Haque and E. Venturino, A Leslie-Gower Holling-type II ecoepidemic model, Journal of Applied Mathematics and Computing 35 (2011), 263-280. https://doi.org/10.1007/s12190-009-0355-1
  33. S.K. Sasmal and Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl. 481 (2020), doi: 10.1016/j.jmaa.2019.123471.
  34. A. Sha, S. Samanta, M. Martcheva, et al., Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect, J. Biol. Dyn. 13 (2019), 301-327. https://doi.org/10.1080/17513758.2019.1593525
  35. B.K. Singh and J. Chattopadhyay, The role of virus infection in a simple phytoplankton zooplankton system, J. Theor. Biol. 231 (2004), 545-559.
  36. J.P. Tripathi and S. Abbas, Almost Periodicity of a Modified Lesli-Gower Predator-Prey System with Crowley-Martin functional Response, Springer Proceedings in Mathematics and Statistics 143 (2015).
  37. E. Venturino, Epidemics in predator-prey models: disease in the prey, In: O. Arino, D. Axelrod, M. Kimmel, M. Langlais, editors, Mathematical population dynamics: analysis of heterogeneity, Theory of epidemics 1 (1995), 381-393.
  38. E. Venturino, Epidemics in predator-prey models: disease in the predators, IMA J. Math. Appl. Med. Biol. 19 (2002), 285-205. https://doi.org/10.1093/imammb/19.3.185
  39. X. Wang, L.Y. Zanette and X. Zou, Modeling the fear effect in predator-prey interactions, J. Math. Biol. 73 (2016), 1179-1204. https://doi.org/10.1007/s00285-016-0989-1
  40. X. Wang and X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol. 79 (2017), 1325-1359. https://doi.org/10.1007/s11538-017-0287-0
  41. J. Wang, Y. Cai, S. Fu, et. al., The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos 29 (2019), doi: 10.1063/1.5111121.
  42. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Second Edition, Springer, New York, 2003.
  43. A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985), 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
  44. Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences 171 (2001), 59-82. https://doi.org/10.1016/S0025-5564(01)00049-9
  45. L.Y. Zanette, A.F. White, M.C. Allen, et al. Perceived predation risk reduces the number of offspring songbirds produce per year, Science 334 (2011), 1398-1401. https://doi.org/10.1126/science.1210908
  46. Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Lesli-Gower Holling-type II schemes, J. Math. Anal. Appl. 384 (2011), 445-454.