• Title/Summary/Keyword: second order difference equations

Search Result 106, Processing Time 0.024 seconds

SECOND ORDER GENERALIZED DIFFERENCE METHODS OR ONE DIMENSIONAL PARABOLIC EQUATIONS

  • Jiang, Ziwen;Sun, Jian
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.15-30
    • /
    • 1999
  • In this paper the second order semi-discrete and full dis-crete generalized difference schemes for one dimensional parabolic equa-tions are constructed and the optimal order $H^1$ , $L^2$ error estimates and superconvergence results in TEX>$H^1$ are obtained. The results in this paper perfect the theory of generalized difference methods.

DISCRETE SOBOLEV ORTHOGONAL POLYNOMIALS AND SECOND ORDER DIFFERENCE EQUATIONS

  • Jung, H.S.;Kwon, K.H.;Lee, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.381-402
    • /
    • 1999
  • Let {Rn($\chi$)}{{{{ { } atop {n=0} }}}} be a discrete Sobolev orthogonal polynomials (DSOPS) relative to a symmetric bilinear form (p,q)={{{{ INT _{ } }}}} pqd$\mu$0 +{{{{ INT _{ } }}}} p qd$\mu$1, where d$\mu$0 and d$\mu$1 are signed Borel measures on . We find necessary and sufficient conditions for {Rn($\chi$)}{{{{ { } atop {n=0} }}}} to satisfy a second order difference equation 2($\chi$) y($\chi$)+ 1($\chi$) y($\chi$)= ny($\chi$) and classify all such {Rn($\chi$)}{{{{ { } atop {n=0} }}}}. Here, and are forward and backward difference operators defined by f($\chi$) = f($\chi$+1) - f($\chi$) and f($\chi$) = f($\chi$) - f($\chi$-1).

  • PDF

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

OSCILLATION OF SECOND ORDER NONLINEAR DELAY DIFFERENCE EQUATIONS

  • Saker, S.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.489-501
    • /
    • 2003
  • In this paper we shall consider the nonlinear delay difference equation $\Delta({p_n}{\Deltax_N})\;+\;q_nf(x_{n-\sigma})\;=\;0,\;n\;=\;0,\;1,\;2,\;...$ when (equation omitted). We will establish some sufficient conditions which guarantee that every solution is oscillatory or converges to zero.

ON THE OSCILLATION OF SECOND-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Zhang, Quanxin;Sogn, Xia;Gao, Li
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.219-234
    • /
    • 2012
  • By using the generalized Riccati transformation and the inequality technique, we establish some new oscillation criterion for the second-order nonlinear delay dynamic equations $$(a(t)(x^{\Delta}(t))^{\gamma})^{\Delta}+q(t)f(x({\tau}(t)))=0$$ on a time scale $\mathbb{T}$, here ${\gamma}{\geq}1$ is the ratio of two positive odd integers with $a$ and $q$ real-valued positive right-dense continuous functions defined on $\mathbb{T}$. Our results not only extend and improve some known results, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation.

OSCILLATION OF SECOND-ORDER FUNCTIONAL DYNAMIC EQUATIONS OF EMDEN-FOWLER-TYPE ON TIME SCALES

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1285-1304
    • /
    • 2010
  • The purpose of this paper is to establish some sufficient conditions for oscillation of solutions of the second-order functional dynamic equation of Emden-Fowler type $\[a(t)x^{\Delta}(t)\]^{\Delta}+p(t)|x^{\gamma}(\tau(t))|\|x^{\Delta}(t)\|^{1-\gamma}$ $sgnx(\tau(t))=0$, $t\;{\geq}\;t_0$, on a time scale $\mathbb{T}$, where ${\gamma}\;{\in}\;(0,\;1]$, a, p and $\tau$ are positive rd-continuous functions defined on $\mathbb{T}$, and $lim_{t{\rightarrow}{\infty}}\;{\tau}(t)\;=\;\infty$. Our results include some previously obtained results for differential equations when $\mathbb{T}=\mathbb{R}$. When $\mathbb{T}=\mathbb{N}$ and $\mathbb{T}=q^{\mathbb{N}_0}=\{q^t\;:\;t\;{\in}\;\mathbb{N}_0\}$ where q > 1, the results are essentially new for difference and q-difference equations and can be applied on different types of time scales. Some examples are worked out to demonstrate the main results.

AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.93-114
    • /
    • 2019
  • In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0