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OSCILLATION OF SECOND-ORDER FUNCTIONAL

DYNAMIC EQUATIONS OF EMDEN-FOWLER-TYPE ON

TIME SCALES

S. H. SAKER

Abstract. he purpose of this paper is to establish some sufficient con-
ditions for oscillation of solutions of the second-order functional dynamic
equation of Emden-Fowler type

[
a(t)x∆(t)

]∆
+ p(t) |xγ(τ(t))|

∣∣∣x∆(t)
∣∣∣
1−γ

sgnx(τ(t)) = 0, t ≥ t0,

on a time scale T, where γ ∈ (0, 1], a, p and τ are positive rd-continuous
functions defined on T, and limt→∞ τ(t) = ∞. Our results include some
previously obtained results for differential equations when T = R. When
T = N and T = qN0 = {qt : t ∈ N0} where q > 1, the results are essentially
new for difference and q− difference equations and can be applied on dif-
ferent types of time scales. Some examples are worked out to demonstrate
the main results.
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1. Introduction

The study of dynamic equations on time scales, which goes back to its founder
Stefan Hilger [10] is an area of mathematics that has recently received a lot of
attention. It has been created in order to unify the study of differential and
difference equations. Many results concerning differential equations carry over
quite easily to corresponding results for difference equations, while other results
seem to be completely different from their continuous counterparts. The study
of dynamic equations on time scales reveals such discrepancies, and helps avoid
proving results twice - once for differential equations and once again for difference
equations. The general idea is to prove a result for a dynamic equation where
the domain of the unknown function is a so-called time scale T, which may be
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an arbitrary closed subset of the reals. This way results not only related to the
set of real numbers or set of integers but those pertaining to more general time
scales are obtained.

The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung [13]),
i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. Dynamic
equations on a time scale have an enormous potential for applications such as
in population dynamics. For example, it can model insect populations that are
continuous while in season, die out in say winter, while their eggs are incubating
or dormant, and then hatch in a new season, giving rise to a nonoverlapping
population (see [5]). There are applications of dynamic equations on time scales
to quantum mechanics, electrical engineering, neural networks, heat transfer,
and combinatorics. A recent cover story article in New Scientist [26] discusses
several possible applications. Since then several authors have expounded on
various aspects of this new theory [6]. The book on the subject of time scale,
i.e., measure chain, by Bohner and Peterson [5] summarizes and organizes much
of time scale calculus.

In this paper, we are concerned with oscillation of the second-order functional
dynamic equation of Emden–Fowler type

(ax∆)∆(t) + p(t) |xγ(τ(t))|
∣∣x∆(t)

∣∣1−γ
sgnx(τ(t)) = 0, (1.1)

on a time scale T. Throughout this paper, we will assume the following hypothe-
ses:

(h1). γ ∈ (0, 1], a and p are positive, rd−continuous functions,
(h2). τ : T→ T, and limt→∞ τ(t) = ∞.
Equation (1.1) is called a delay dynamic equation if τ(t) < t and is called

an advanced dynamic equation if τ(t) > t. Since, we are interested in the os-
cillatory and asymptotic behavior of solutions near infinity, we assume that
supT = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞)∩T.
By a solution of (1.1), we mean a function x[0](t) ∈ C1

r ([t0,∞),R) such that
x[1](t) ∈ C1

r ([t0,∞),R) satisfying (1.1) for all t ≥ t0, where Cr is the space of
rd−continuous functions and

x[0] = x, x[1] = ax∆ and x[2] =
(
x[1]

)∆

are called the ∆−quasi derivatives of the solution x(t). Any solution of (1.1)
is said to be proper if it is defined on the interval [t0,∞)T and is nontrivial in
any neighborhood of infinity. So the solutions vanishing in some neighborhood
of infinity will be excluded from our consideration and we are interesting only
in the asymptotic behavior of the proper solutions. A proper solution x(t) of
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory
in case every solution of is oscillatory and is nonoscillatory if all its solutions are
nonoscillatory.
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In the last few years, there has been increasing interest in obtaining suffi-
cient conditions for the qualitative properties of solutions of different classes of
dynamic equations on time scales, for contribution we refer the readers to the
papers [1, 2, 3, 4, 7, 8, 9, 12, 17, 19, 20, 21, 22, 23, 24, 25] and the references
cited therein. For completeness in the following, we recall some of the related
results that has been established for the second-order dynamic equations on time
scales that serve and motivate the contents of this paper. In [4] Akın-Bohner
and Hoffacker considered the second order dynamic equation

x∆∆(t) + p(t)(xσ)γ = 0 (1.2)

of Emden-Fowler type and established some necessary and sufficient conditions
for oscillation of all solutions when γ > 1 and 0 < γ < 1, where σ(t) :=
inf {s ∈ T : s > t} is the forward jump operator defined on the time scale. Their
results cannot be applied in the case when γ = 1 and applied only on discrete
time scales.

In [1] Agarwal, Bohner and Saker considered the delay dynamic equation

x∆∆(t) + p(t)x(τ(t)) = 0 (1.3)

on a time scale T, where the function p is rd−continuous such that p(t) > 0 for
all t ∈ T, τ : T → T and proved that if there exists a differentiable function δ
such that

lim
t→∞

∫ t

t0

{
δ2(σ(s))p(s)

τ(s)

σ(s)
− (

δ∆(s)
)2}

∆s = ∞, (1.4)

then every solution of (1.3) is oscillatory.
In [3] Akın-Bohner, Bohner and Saker considered the Emden-Fowler dynamic

equation

(ax∆)∆(t) + p(t)xγ(σ(t)) = 0 (1.5)

and proved that if ∫ ∞

t0

∆t

a(t)
= ∞ (1.6)

and there exists a differentiable function δ such that

lim sup
t→∞

∫ t

a

[
p(s) (δσ(s))2 −Kγ−1a(s)

(
δ∆(s)

)2
]
∆s = ∞, for γ > 1, (1.7)

lim sup
t→∞

∫ t

a

[
p(s) (δσ(s))2 −Kγ−1(σ(s))γ−1a(s)

(
δ∆(s)

)2
]
∆s = ∞, 0 < γ ≤ 1 (1.8)

for all constants K > 0 then every solution of (1.5) is oscillatory.
In [12] Han, Sun and Shi considered the delay equation

x∆∆(t) + p(t)xγ(τ(t)) = 0, (1.9)

where γ is a quotient of odd positive integers, p is a positive, real-valued rd-
continuous function, τ(t) : T→ T, is a positive, real-valued rd-continuous func-
tion such that τ(t) ≤ t and limt→∞ τ(t) = ∞. The authors extended the condi-
tions (1.7) and (1.8) and proved that if (1.6) hold and there exists a differentiable
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function δ such that

lim sup
t→∞

∫ t

a

[
p(s)

(
τ(s)

σ(s)

)γ

(δσ(s))2 −Kγ−1
(
δ∆(s)

)2
]
∆s = ∞, for γ > 1, (1.10)

lim sup
t→∞

∫ t

a

[
p(s)

(
τ(s)

σ(s)

)γ

(δσ(s))2 − (σ(s))γ−1
(
δ∆(s)

)2
K1−γ

]
∆s = ∞, for γ < 1 (1.11)

for all constants K > 0, then every solution of (1.9) is oscillatory. We Note that
all above results are given for the ordinary or the delay equations and nothing
is known regarding the oscillation of advanced equations. So one of our aims
in this paper is to consider this case and establish some sufficient conditions for
oscillation of Emden-Fowler advanced dynamic equations.

Dynamic equation (1.1) in its general form, includes second-order differential
and difference equations depends on the time scale T. When T = R, σ(t) = t,
µ(t) = 0, x∆(t) = x′(t) and (1.1) becomes the functional differential equation

(a(t)x
′
(t))

′
+ p(t) |xγ(τ(t))|

∣∣∣x′
(t)

∣∣∣
1−γ

sgnx(τ(t)), [t0,∞) (1.12)

When τ(t) = t and a(t) = 1, the equation (1.12) becomes

x
′′
(t) + p(t) |xγ(t)|

∣∣∣x′
(t)

∣∣∣
1−γ

sgnx(t) = 0, t ∈ [t0,∞). (1.13)

Oscillation and asymptotic properties of (1.13), has been investigated in the
literature by some authors, we refer the reader to the papers [15, 16]. When
γ = 1, the equation (1.13) becomes

x
′′
(t) + p(t)x(t) = 0, t ∈ [t0,∞). (1.14)

This equation has been investigated in the literature by many authors. Here we
present some of these results that serve and motivate the contents of this paper.
Hille [11] proved that every solution of (1.14) oscillates if

lim inf
t→∞

t

∞∫

t

p(s)ds >
1

4
. (1.15)

Nehari [18] proved that if

lim inf
t→∞

1

t

t∫

t0

s2p(s)ds >
1

4
, (1.16)

then every solution of (1.14) oscillates. Lomtatidze [16], extended the condition
(1.15) and proved that if

lim inf
t→∞

tγ
∞∫

t

p(s)ds >
γγ−1

(γ + 1)γ+1
, (1.17)
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then every solution of (1.13) oscillates. Lomtatidze [16] extended the condition
(1.16) and proved that if

lim inf
t→∞

1

t

t∫

t0

sγ+1p(s)ds >
γγ

(γ + 1)γ+1
, (1.18)

then every solution of (1.13) oscillates. Also it was proved that

γ lim sup
t→∞

1

t

t∫

t0

sγ+1p(s)ds > 1, (1.19)

then every solution of (1.13) oscillates.
When T = N, σ(n) = n+ 1, µ(n) = 1, x∆(n) = ∆x(n) = x(n+ 1)− x(n).

In this case, (1.1) becomes the difference equation

∆(a(n)∆x(n)) + p(n) |xγ(τ(n))| |∆x(n)|1−γ sgnx(τ(n)) = 0, n ∈ [n0,∞)N (1.20)

If T =hN0, h > 0, σ(t) = t+ h, µ(t) = h, x∆(t) = ∆hx(t) :=
x(t+h)−x(t)

h .
In this case, (1.1) becomes the difference equation with step size h

∆h(a(t)∆hx(t)) + p(t) |xγ(τ(t))| |∆hx(t)|1−γ sgnx(τ(t)) = 0, t ∈ [0,∞)hN0 (1.21)

If T = qN0 = {t : t = qk, k ∈ N0, q > 1}, σ(t) = qt, µ(t) = (q − 1)t,

x∆(t) = Dqx(t) :=
x(q t)−x(t)

(q−1) t (Dq is the so-called quantum derivative which has

important applications in quantum mechanics [13]). In this case (1.1) becomes

Dq(a(t)Dqx(t)) + p(t) |xγ(τ(t))| |Dqx(t)|1−γ sgnx(τ(t)) = 0, t ∈ [t0,∞)T (1.22)

Also, the results can be applied to many other time scales. For example, if
T = N2

0 = {t = n2 : n ∈ N0}, we have σ(t) = (
√
t + 1)2 and µ(t) = 1 + 2

√
t,

x∆(t) = ∆0x(t) =
x((

√
t+1)2)−x(t)

1+2
√
t

, and (1.1) becomes

∆0(a(t)∆0x(t)) + p(t) |xγ(τ(t))| |∆0x(t)|1−γ sgnx(τ(t)) = 0, t ∈ [t0,∞)T (1.23)

When T = Tn = {tn : n ∈ N} where tn are the so-called harmonic numbers
defined by

t0 = 0, tn =

n∑

k=1

1

k
, n ∈ N0,

we have σ(tn) = tn+1, µ(tn) =
1

n+1 , y
∆(t) = ∆tny(tn) = (n+1)∆y(tn) and (1.1)

becomes

∆tn(a(t)∆tnx(t)) + p(t) |xγ(τ(t))| |∆tnx(t)|1−γ
sgnx(τ(t)) = 0. (1.24)

When T = T2={√n : n ∈ N0}, we have σ(t) =
√
t2 + 1 and µ(t) =

√
t2 + 1 −

t,x∆(t) = ∆2x(t) = (x(
√
t2 + 1) − x(t))/

√
t2 + 1 − t, and (1.1) becomes the

second-order difference equation

∆2(a(t)∆2x(t)) + p(t) |xγ(τ(t))| |∆2x(t)|1−γ
sgnx(τ(t)) = 0. (1.25)
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When T = T3={ 3
√
n : n ∈ N0}, we have σ(t) = 3

√
t3 + 1 and µ(t) = 3

√
t3 + 1 −

t,x∆(t) = ∆3x(t) = (x( 3
√
t3 + 1) − x(t))/ 3

√
t3 + 1 − t, and (1.1) becomes the

second-order difference equation

∆3(a(t)∆3x(t)) + p(t) |xγ(τ(t))| |∆3x(t)|1−γ
sgnx(τ(t)) = 0. (1.26)

The natural question now is: If the oscillation conditions (1.17), (1.18) and
(1.19) due Lomtatadiz for second order differential equation (1.13) can be ex-
tended to the functional dynamic equation (1.1) on time scales?. The purpose
of this paper is to give an affirmative answer to this question and establish some
sufficient conditions for oscillation of the equation (1.1). Our results are new for
the second order dynamic equations and include the previously obtained results
for differential equations (1.13) and (1.14). For the equations (1.12), (1.20)-
(1.26) our results are essentially new. The paper is organized as follows: In
section 2, we prove the main results. In Section 3, we give some applications
of the results and establish some sufficient conditions for oscillation of different
types of equations on different time scales. In Section4, we give some examples
to demonstrate the main results.

2. Main Results

In this section, we establish some sufficient conditions for oscillation of (1.1).
We note that if x(t) is a solution of (1.1) then z = −x is also solution of (1.1).
Thus, concerning nonoscillatory solutions of (1.1) we can restrict our attention
only to the positive ones.

2.1. Case when τ(t) > t. In this subsection, we establish some sufficient
conditions for oscillation for advanced equation. We introduce the following
notations:

p∗ := lim inft→∞ tγ

aγ(t)

∫∞
σ(t)

Q(s)∆s q∗ := lim inft→∞ 1
t

∫ t

T
sγ+1

aγ(t)Q(s)∆s,

r∗ := lim inft→∞
tγwσ(t)
aγ(t) , R := lim supt→∞

tγwσ(t)
aγ(t) ,

Q(t) := γp(t)
(

a(t)A(t,T )
a(t)A(t,T )+σ(t)−t

)γ

, A(t, T ) :=
∫ t

T

(
1

a(τ)

)
∆τ,

and assume that l := lim inft→∞ t
σ(t) . Note that 0 ≤ l ≤ 1.

Theorem 2.1. Assume that (h1) − (h2), (1.6) hold and τ(t) > t. Let x(t) be
a solution of (1.1) and make the Riccati substitution

w :=

(
x[1]

x

)γ

.

Then w(t) > 0 and

w∆(t) +Q(t) +
γ

a(t)
(wσ)

1+ 1
γ (t) ≤ 0, for t ∈ [T,∞)T. (2.1)
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Proof. Let x be as in the statement of this theorem and without loss of generality
we assume that there is t1 > t0 such that x(t) > 0 and x(τ(t)) > 0. Then from

(1.1), we see that x[2](t) = −p(t) |xγ(τ(t))|
∣∣x∆(t)

∣∣1−γ
< 0 for t ≥ t1 and there

exists T > t1 such that x[1](t) is decreasing and either positive or negative
for t ≥ T. We claim that x[1](t) > 0 on [t1,∞)T. Assume not, then there is
a t2 ∈ [t1,∞)T such that x[1](t2) =: c < 0. Then x[1](t) ≤ x[2(t2) = c, for
t ∈ [t2,∞)T, and therefore x∆(t) ≤ c

a(t) , for t ∈ [t2,∞)T. Integrating, we find by

(1.6) that

x(t) = x(t2) +

∫ t

t2

x∆(s)∆s ≤ x(t2) + c

∫ t

t2

∆s

a(s)
→ −∞ as t → ∞

which implies that x(t) is eventually negative and this is a contradiction. Then
there exists T > t1 such that x(t) > 0, x[1](t) > 0, x[2](t) < 0 for t ≥ T. By the
quotient rule ([5, Theorem 1.20]), we have

w∆(t) =

((
x[1]

)γ
xγ

)∆

=
xγ

((
x[1]

)γ)∆

− (xγ)
∆ (

x[1]
)γ

xγ (xσ)
γ

=

((
x[1]

)γ)∆

(xσ)
γ − (xγ)

∆ (
x[1]

)γ
xγ (xσ)

γ

(2.2)

By the Pötzsche chain rule ([5, Theorem 1.90]), if f∆(t) < 0 and 0 < γ ≤ 1, we
obtain

(fγ(t))
∆
= γf∆(t)

∫ 1

0

[
f(t) + hµ(t)f∆(t)

]γ−1
dh

= γf∆(t)

∫ 1

0

[(1− h) f(t) + hfσ(t)]
γ−1

dh

≤ γf∆(t)

∫ 1

0

(f(t))
γ−1

dh = γ(f(t))γ−1f∆(t)

(2.3)

By putting f(t) = x[1](t), since x is increasing and x[1] is decreasing, we have

((
x[1]

)γ)∆

≤ γ(x[1])γ−1(x[1])∆ = γ(x[1])γ−1(x[2]).

This, (1.1) and (2.2) implies that

w∆(t) ≤ −γp(t)

(
x(τ)

xσ

)γ

− (xγ)
∆ (

x[1]
)γ

xγ (xσ)
γ . (2.4)



1292 S. H. Saker

By the Pötzsche chain rule ([5, Theorem 1.90]), if f∆(t) > 0 and 0 < γ ≤ 1, we
obtain

(fγ(t))
∆
= γf∆(t)

∫ 1

0

[
f(t) + hµ(t)f∆(t)

]γ−1
dh

= γf∆(t)

∫ 1

0

[(1− h) f(t) + hfσ(t)]
γ−1

dh

≥ γf∆(t)

∫ 1

0

(fσ(t))
γ−1

dh = γ(fσ(t))γ−1f∆(t)

(2.5)

So that from (2.5), by putting f(t) = x(t), since x is increasing and x[1] is
decreasing, we have for 0 < γ ≤ 1

(xγ)
∆ (

x[1]
)γ

xγ (xσ)
γ ≥ γx[1] (xσ)

γ−1 (
x[1]

)γ
axγ (xσ)

γ =
γx[1]

(
x[1]

)γ
axγ (xσ)

≥
γ
(
x[1]

)σ ((
x[1]

)σ)γ

a (xσ)
γ
xσ

=
γ

a
(wσ)

1+ 1
γ .

Substituting in (2.4), we have

w∆(t) ≤ −γp(t)

(
x(τ)

xσ

)γ

− γ

a
(wσ)

1+ 1
γ . (2.6)

Next consider the coefficient of p(t) in (2.6). Since xσ = x(t) + µ(t)x∆, we have

xσ

x(t)
= 1 + µ(t)

x∆

x(t)
= 1 +

µ(t)

a(t)

x[1](t)

x(t)
.

Also since x[1](t) is decreasing, we have

x(t) = x(T )+

∫ t

T

x[1](τ)

a(τ)
∆τ ≥ x(T )+x[1](t)

∫ t

T

1

a(τ)
∆τ > x[1](t)

∫ t

T

(
1

a(τ)

)
∆τ.

It follows that

x(t)/x[1](t) ≥
∫ t

T

(
1

a(τ)

)
∆τ = A(t, T ). (2.7)

Hence

xσ

x(t)
= 1 + µ(t)

x∆

x(t)
= 1 +

µ(t)

a(t)

x[1](t)

x(t)
≤ a(t)A(t, T ) + µ(t)

a(t)A(t, T )
.

Hence, we have

x(t)

xσ
≥ a(t)A(t, T )

a(t)A(t, T ) + µ(t)
=

a(t)A(t, T )

a(t)A(t, T ) + σ(t)− t
.

So that
x(τ)

xσ
=

x(τ)

x

x

xσ
≥ x(τ)

x(t)

a(t)A(t, T )

a(t)A(t, T ) + σ(t)− t
. (2.8)
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Now, since τ(t) > t and x(t) is increasing, we have x(τ)/x(t) > 1. This and (2.8)
show that

x(τ)/ (x)
σ ≥ a(t)A(t, T )/ (a(t)A(t, T ) + σ(t)− t) . (2.9)

Substituting from (2.9) into (2.6), we have the inequality (2.1) and this completes
the proof. ¤

In order for the definition of p∗ to make sense, we assume that∫ ∞

t0

Q(s)∆s < ∞. (2.10)

Theorem 2.2. Assume that (h1)−(h2), (1.6) hold and a∆(t) ≥ 0. Furthermore,
assume that

p∗ >
γγ

lγ2(γ + 1)γ+1
, (2.11)

or

p∗ + q∗ >
1

lγ(γ+1)
. (2.12)

Then every solution of (1.1) is oscillatory.

Proof. Suppose the contrary and assume that (1.1) has a nooscillarory solution
x(t). Without loss of generality we may assume that x(t) > 0, x(τ(t)) > 0
for t ≥ T where T is chosen so large. Define the function w(t) by the Riccati
substitution as in Theorem 2.1. Then, we get from (2.1) that

−w∆(t) > Q(t) + γa−
1
γ (t)(wσ(t))

γ+1
γ , for t ∈ [T,∞)T. (2.13)

Since x[1](t) = a(t)x∆(t), integrating in (T, t), we obtain

x(t) = x(T ) +

∫ t

T

x[1]

a(s)
(s)∆s.

Taking into account that x[1](t) is positive and decreasing, we get,

x(t) ≥ x(T ) + x[1](t)

∫ t

T

1

a(s)
∆s > x[1](t)

∫ t

T

1

a(s)
∆s.

It follows that

w(t) =
(
x[1]/x

)γ

<

(∫ t

t0

1

a(s)
∆s

)−γ

, for t ∈ [T,∞)T,

which implies using (1.6) that limt→∞ w(t) = 0. First, we assume (2.11) holds.
Integrating (2.13) from σ(t) to ∞ and using limt→∞ w(t) = 0, we have

wσ(t) ≥
∫ ∞

σ(t)

Q(s)∆s+ γ

∫ ∞

σ(t)

r
−1
γ (s)(wσ(s))

1
γ wσ(s)∆s. (2.14)

where r(t) = aγ(t). It follows from (2.14) that

tγwσ(t)

r(t)
≥ tγ

r(t)

∫ ∞

σ(t)

Q(s)∆s+ γ
tγ

r(t)

∫ ∞

σ(t)

r
−1
γ (s)(wσ(s))

1
γ wσ(s)∆s. (2.15)
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Let ε > 0, then by the definition of p∗ and r∗ we can pick t1 ∈ [T,∞)T, sufficiently
large, so that

tγ

r(t)

∫ ∞

σ(t)

Q(s)∆s ≥ p∗ − ε, and
tγwσ(t)

r(t)
≥ r∗ − ε, for t ∈ [t1,∞)T. (2.16)

From (2.15) and (2.16) and using the fact r∆(t) ≥ 0, we get that

tγwσ(t)

r(t)
≥ (p∗ − ε) + γ

tγ

r(t)

∫ ∞

σ(t)

r
−1
γ (s)

s (wσ(s))
1
γ sγwσ(s)

sγ+1
∆s

≥ (p∗ − ε) + (r∗ − ε)
1+ 1

γ
tγ

r(t)

∫ ∞

σ(t)

γr(s)

sγ+1
∆s

≥ (p∗ − ε) + (r∗ − ε)
1+ 1

γ tγ
∫ ∞

σ(t)

γ

sγ+1
∆s

(2.17)

Using the Pötzsche chain rule ([5, Theorem 1.90]), we get
(−1

sγ

)∆

= γ

∫ 1

0

1

[s+ hµ(s)]γ+1
dh ≤

∫ 1

0

( γ

sγ+1

)
dh =

γ

sγ+1
. (2.18)

Then from (2.17) and (2.18), we have

tγwσ(t)

r(t)
≥ (p∗ − ε) + (r∗ − ε)

1+ 1
γ

(
t

σ(t)

)γ

.

Taking the lim inf of both sides as t → ∞ we get that r∗ ≥ a∗−ε+(r∗ − ε)
1+ 1

γ lγ .
Since ε > 0 is arbitrary, we get

p∗ ≤ r∗ − r
1+ 1

γ∗ lγ . (2.19)

Using the inequality Bu − Au
γ+1
γ ≤ γγ

(γ+1)γ+1
Bγ+1

Aγ with B = 1 and A = lγ , we

get that

p∗ ≤ γγ

lγ2(γ + 1)γ+1
,

which contradicts (2.11). Next, we assume (2.12) holds. Multiplying both sides

(2.13) by tγ+1

r(t) , and integrating from T to t (t ≥ T ), we get

∫ t

T

sγ+1

r(s)
w∆(s)∆s ≤ −

∫ t

T

sγ+1

r(s)
Q(s)∆s− γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.

Using integration by parts, we obtain

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
+

∫ t

T

(
sγ+1

r(s)

)∆

wσ(s)∆s−
∫ t

T

sγ+1

r(s)
Q(s)∆s

− γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.
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By the quotient rule and applying the Pötzsche chain rule,

(
sγ+1

r(s)

)∆

=
(sγ+1)∆

rσ(s)
− sγ+1r∆(s)

r(s)rσ(s)
≤ (γ + 1)σγ(s)

rσ(s)
≤ (γ + 1)σγ(s)

r(s)
. (2.20)

Hence

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
Q(s)∆s+

∫ t

T

(γ + 1)

(
σγ(s)wσ(s)

r(s)

)
∆s

− γ

∫ t

T

(
sγwσ(s)

r(s)

) γ+1
γ

∆s.

Let ε > 0 be given, then using the definition of l, we can assume, without loss
of generality, that T is sufficiently large so that s

σ(s) > l − ε, s ≥ T. It follows

that

σ(s) ≤ Ks, s ≥ T where K :=
1

l − ε
.

We then get that

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
Q(s)∆s

+

∫ t

T

{
(γ + 1)Kγ s

γwσ(s)

r(s)
− γ

(
sγwσ(s)

r(s)

) γ+1
γ

}
∆s.

Let u(s) := sγwσ(s)
r(s) , then uλ(s) =

(
sγwσ(s)

r(s)

)λ

, where λ = γ+1
γ . It follows that

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
Q(s)∆s+

∫ t

T

{
(γ + 1)Kγu(s)− γuλ(s)

}
∆s.

Again, using the inequality Bu−Auλ ≤ γγ

(γ+1)γ+1
Bγ+1

Aγ , where A, B are constants,
we get

tγ+1w(t)

r(t)
≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
Q(s)∆s+

∫ t

T

γγ

(γ + 1)γ+1

[(γ + 1)Kγ ]γ+1

γγ
∆s

≤ T γ+1w(T )

r(T )
−
∫ t

T

sγ+1

r(s)
Q(s)∆s+Kγ(γ+1)(t− T ).

It follows from this that

tγw(t)

r(t)
≤ T γ+1w(T )

tr(T )
− 1

t

∫ t

T

sγ+1

r(s)
p(s)∆s+Kγ(γ+1)(1− T

t
).

Since wσ(t) ≤ w(t), we get

tγwσ(t)

r(t)
≤ T γ+1w(T )

tr(T )
− 1

t

∫ t

T

sγ+1

r(s)
Q(s)∆s+Kγ(γ+1)(1− T

t
).
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Taking the lim sup of both sides as t → ∞ we obtain R ≤ −q∗ + Kγ(γ+1) =
−q∗ + 1

(l−ε)γ(γ+1) . Since ε > 0 is arbitrary, we get that R ≤ −q∗ + 1
lγ(γ+1) . Using

this and the inequality (2.19), we get

p∗ ≤ r∗ − lγr
1+ 1

γ∗ ≤ r∗ ≤ R ≤ −q∗ +
1

lγ(γ+1)
.

Therefore

p∗ + q∗ ≤ 1

lγ(γ+1)
,

which contradicts (2.12). The proof is complete. ¤

From Theorem 2.1, we have the following results immediately.

Corollary 2.1. Assume that (h1) − (h2), (1.6) hold, and a∆(t) ≥ 0 .Further-
more, assume that

lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
Q(s)∆s >

γγ

lγ2(γ + 1)γ+1
. (2.21)

Then every solution of (1.1) is oscillatory.

Corollary 2.2. Assume that (h1) − (h2), (1.6) hold, and a∆(t) ≥ 0. Further-
more, assume that

lim inf
t→∞

tγ

aγ(t)

∫ ∞

σ(t)

Q(s)∆s >
1

lγ(γ+1)
. (2.22)

Then every solution of (1.1) is oscillatory.

Corollary 2.3. Assume that (h1)−(h2), (1.6) hold and a∆(t) ≥ 0. Furthermore,
assume that

lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
Q(s)∆s >

1

lγ(γ+1)
. (2.23)

Then every solution of (1.1) is oscillatory.

2.2. Case when τ(t) ≤ t. In this section, we consider the case when τ(t) ≤ t
and establish some sufficient conditions for oscillation. First, we will prove the
following lemma which will be useful in the proof of the main results.

Lemma 2.1. . Assume that (1.6) holds, a∆(t) ≥ 0, and
∫ ∞

t0

τγ(t)p(t)∆t = ∞. (2.24)

Suppose that (1.1) has a positive solution x on [t0,∞)T. Then there exists a
T ∈ [t0,∞)T, sufficiently large, so that

(i). x∆∆(t) < 0, x(t) > tx∆(t) for t ∈ [T,∞)T;
(ii). x(t)/t is strictly decreasing on [T,∞)T.
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Proof. Assume x is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,∞)T so
that t1 > t0 and so that x(τ(t)) > 0 on [t1,∞)T. (Note that in the case when x(t)
is negative the proof is similar, since the transformation y(t) = −x(t) transforms
the (1.1) into the same form). Since x is a positive solution of (1.1), we see from
Theorem 2.1 that x[1](t) > 0 and strictly decreasing on [t1,∞)T. We show that
x∆∆(t) < 0. Since (x[1](t))∆ < 0 on [t1,∞)T, we have after differentiation that

a∆(t)x∆(t) + aσx∆∆(t) < 0. (2.25)

since a∆(t) ≥ 0, we have x∆∆(t) < 0. Next, we show that x(t)/t is strictly
decreasing. To do this, let U(t) := x(t)−tx∆(t), so that U∆(t) = −σ(t)x∆∆(t) >
0 for t ∈ [t1,∞)T. This implies that U(t) is strictly increasing on [t1,∞)T. We
claim there is a t2 ∈ [t1,∞)T such that U(t) > 0 on [t2,∞)T. Assume not, then
U(t) < 0 on [t1,∞)T. Therefore,

(
x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= − U(t)

tσ(t)
> 0, t ∈ [t1,∞)T, (2.26)

which implies that x(t)/t is strictly increasing on [t1,∞)T. Pick t3 ∈ [t1,∞)T
so that τ(t) ≥ τ(t1), for t ≥ t3. Then x(τ(t))/τ(t) ≥ x(τ(t1))/τ(t1) =: d > 0,
x(t)/t ≥ x(t1)/t1 = d1 > 0, so that x(τ(t)) ≥ dτ(t) and x(t) > d1t for t ≥ t3.
Now by integrating both sides of (1.1) from t3 to t, we have

a(t)x∆(t)− a(t3)x
∆(t3) +

∫ t

t3

p(s)xγ(τ(s))(x∆(s))1−γ∆s = 0.

Since by assumption x(t) < tx∆(t), this implies that

a(t3)x
∆(t3) ≥

∫ t

t3

p(s)xγ(τ(s))(x∆(s))1−γ∆s

≥ dγ
∫ t

t3

p(s)τγ(s)(x∆(s))1−γ∆s

≥ dγ
∫ t

t3

p(s)τγ(s)

(
x(s)

s

)1−γ

∆s

≥ dγd1−γ
1

∫ t

t3

p(s)τγ(s)∆s,

which contradicts (2.24). Hence there is a t2 ∈ [t1,∞)T such that U(t) > 0 on
[t2,∞)T. Consequently,

(
x(t)

t

)∆

=
tx∆(t)− x(t)

tσ(t)
= − U(t)

tσ(t)
< 0, t ∈ [t2,∞)T

and we have that x(t)
t is strictly decreasing on [t2,∞)T. The proof is complete.

¤



1298 S. H. Saker

For the delay case we introduce the following notations:

A∗ : = lim inf
t→∞

tγ

aγ(t)

∫ ∞

σ(t)

A(s)∆s, B∗ := lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
A(s)∆s,

A(t) : = γp(t)

(
τ(t)

σ(t)

)γ

.

Theorem 2.3. Assume that (h1) − (h2), (1.6), (2.24) hold and a∆(t) ≥ 0.
Let x(t) be a solution of (1.1) and make the Riccati substitution w(t) be as in
Theorem 2.1. Then

w∆(t) +A(t) +
γ

a(t)
(wσ)

1+ 1
γ (t) ≤ 0, for t ∈ [T,∞)T. (2.27)

Proof. Let x be as in the statement of this theorem and without loss of generality
we assume that there is t1 > t0 such that x(t) > 0 and x(τ(t)) > 0. Now, since
a∆(t) ≥ 0 then there exists T > t1 such that x(t) > 0, x[1](t) > 0, x[2](t) < 0
for t ≥ T. From the definition of w(t), by quotient rule [?, Theorem 1.20] and
continue as in the proof of Theorem 2.1, we get

w∆(t) ≤ −αp(t)

(
x(τ)

(x)
σ

)γ

− γa−1 (wσ)
1+ 1

γ . (2.28)

Now we consider the coefficient of p(t) in (2.28). From Lemma 2.1, since x(t)/t
is decreasing and τ(t) ≤ t ≤ σ(t), we have

x(τ)

xσ
≥ τ(t)

σ(t)
, (2.29)

Substituting from (2.29) into (2.28), we have the inequality (2.27) and this com-
pletes the proof. ¤

In order for the definition of A∗ to make sense, we assume that
∫ ∞

t0

A(s)∆s < ∞.

Theorem 2.4. Assume that (h1) − (h2), (1.6), (2.24) hold and a∆(t) ≥ 0.
Furthermore, assume that

A∗ >
γγ

lγ2(γ + 1)γ+1
, (2.30)

or

A∗ +B∗ >
1

lγ(γ+1)
. (2.31)

Then every solution of (1.1) is oscillatory..

Proof. The proof is similar to the proof of Theorem 2.2, by replacing p(t) by
A(t) and hence is omitted. ¤
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Corollary 2.4. Assume that (h1) − (h2), (1.6), (2.24) hold and a∆(t) ≥ 0.
Furthermore, assume that

lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
A(s)∆s >

γγ

lγ2(γ + 1)γ+1
. (2.32)

Then every solution of (1.1) is oscillatory.

Corollary 2.5. Assume that (h1) − (h2), (1.6), (2.24) hold and a∆(t) ≥ 0.
Furthermore, assume that

lim inf
t→∞

tγ

aγ(t)

∫ ∞

σ(t)

A(s)∆s >
1

lγ(γ+1)
. (2.33)

Then every solution of (1.1) is oscillatory.

Corollary 2.6. Assume that (h1) − (h2), (1.6), (2.24) hold and a∆(t) ≥ 0.
Furthermore, assume that

lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
A(s)∆s >

1

lγ(γ+1)
. (2.34)

Then every solution of (1.1) is oscillatory.

3. Applications

In this section, we use Theorems 2.2 and 2.4 to establish some sufficient
conditions for oscillation of (1.12), (1.20), (1.21) and (1.22). First, we consider
the case when T = R. We restate the assumptions for this case:

(H1). γ ∈ (0, 1], a and p are positive continuous functions,
(H2). τ : T→ T, and limt→∞ τ(t) = ∞,

∫ ∞

t0

1

a(t)
dt = ∞. (3.1)

The following theorem gives some sufficient conditions for oscillation of (1.12)
when τ(t) > t. Note that when T = R, we have σ(t) = t and then Q(t) = γp(t).

Theorem 3.1. Assume that (H1) − (H2), (3.1) hold, and a
′
(t) ≥ 0, τ(t) > t.

Furthermore, assume that

γ lim inf
t→∞

tγ

aγ(t)

∫ ∞

t

p(s)ds >
γγ

(γ + 1)γ+1
, (3.2)

or

γ lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
p(s)ds > 1. (3.3)

Then every solution of (1.12) is oscillatory.

Corollary 3.1. Assume that (H1)− (H2), τ(t) > t. Furthermore, assume that

γ lim inf
t→∞

tγ
∫ ∞

t

p(s)ds >
γγ

(γ + 1)γ+1
, (3.4)
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or

γ lim inf
t→∞

1

t

∫ t

T

sγ+1p(s)ds > 1. (3.5)

Then every solution of (1.13) is oscillatory.

The following theorem gives some sufficient conditions for oscillation of (1.12)
when τ(t) ≤ t.

Theorem 3.2. Assume that (H1)− (H2), (3.1) hold, a
′
(t) ≥ 0, τ(t) ≤ t and

∫ ∞

t0

τγ(t)p(t)dt = ∞. (3.6)

Furthermore, assume that

γ lim inf
t→∞

tγ

aγ(t)

∫ ∞

t

p(s)

(
τ(s)

s

)γ

ds >
γγ

(γ + 1)γ+1
, (3.7)

or

γ lim inf
t→∞

1

t

∫ t

T

sγ+1

aγ(s)
p(s)

(
τ(s)

s

)γ

ds > 1, (3.8)

then (1.12) is oscillatory.

Corollary 3.2. Assume that (H1) − (H2), (3.1), (3.6) hold and a
′
(t) ≥ 0,

τ(t) ≤ t. Furthermore, assume that

γ lim inf
t→∞

tγ
∫ ∞

t

p(s)

(
τ(s)

s

)γ

ds >
γγ

(γ + 1)γ+1
, (3.9)

or

γ lim inf
t→∞

1

t

∫ t

T

sγ+1p(s)

(
τ(s)

s

)γ

ds > 1. (3.10)

Then (1.13) is oscillatory.

Remark. Note that when τ(t) = t, the results in Corollary 3.2 become the
results that has been established in [15, 16].

Next, we consider the case when T = Z and assume that:
(D1). γ ∈ (0, 1], a and p are positive sequences,
(D2). τ : T→ T, and limt→∞ τ(t) = ∞,

∞∑
t=t0

1

a(t)
= ∞. (3.11)

The following theorem gives some sufficient conditions for oscillation of (1.20)
when τ(t) > t

Theorem 3.3. Assume that (D1) − (D2) (3.11) hold, ∆a(t) ≥ 0 and τ(t) > t.
Furthermore, assume that

γ lim inf
t→∞

tγ

a(t)

∞∑
s=t+1

D(s) >
γγ

(γ + 1)γ+1
, (3.12)
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or

γ lim inf
t→∞

tγ

a(t)

∞∑
s=t+1

D(s) + γ lim inf
t→∞

tγ

a(t)

∞∑
s=t+1

D(s) > 1, (3.13)

where

D(t) := γp(t)

(
a(t)P (t, T )

a(t)P (t, T ) + 1

)γ

, P (t, T ) =

t−1∑

T

1

a(τ)
.

Then every solution of equation (1.20) is oscillatory.

The following theorem gives some sufficient conditions for oscillation of (1.20)
when τ(t) ≤ t.

Theorem 3.4. Assume that (D1)− (D2), (3.11) hold, ∆a(t) ≥ 0 and τ(t) ≤ t
and

∞∑
t=t0

τγ(t)p(t) = ∞. (3.14)

Furthermore, assume that

γ lim inf
t→∞

tγ

r(t)

∞∑
s=t+1

(
τ(s)

s+ 1

)γ

p(s) >
γγ

(γ + 1)γ+1
(3.15)

or

γ lim inf
t→∞

tγ

r(t)

∞∑
s=t+1

(
τ(s)

s+ 1

)γ

p(s) + γ lim inf
t→∞

tγ

r(t)

∞∑
s=t+1

(
τ(s)

s+ 1

)γ

p(s) > 1 (3.16)

Then every solution of equation (1.20) is oscillatory.

Now, we consider the case when T =hZ, h > 0. The following theorem gives
some sufficient conditions for oscillation of (1.21) when τ(t) > t and the case
when τ(t) ≤ t will be left to the interested reader due to the limited space. Also
one can derive some sufficient conditions for oscillation of (1.22) from Theorem
2.2 and Theorem 2.4.

Theorem 3.5. Assume that (D1)− (D2) hold, ∆ha(t) ≥ 0, τ(t) ≤ t, and

∞∑

k=0

τγ(t0 + kh)p(t0 + kh) = ∞,

∞∑

k=0

h

a(t0 + kh)
= ∞, (3.17)

∞∑

k=0

(
τ(t0 + kh)

t0 + kh+ h

)γ

p(t0 + kh) < ∞.

Furthermore, assume that

lim inf
t→∞

tγ

r(t)

∞∑

k=0

(
τ(t+ kh+ h)

t+ kh+ 2h

)γ

p(t+ kh+ h)h >
γγ

(γ + 1)γ+1
, (3.18)
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or

lim inf
t→∞

1

t

t−t0−h
h∑

k=0

(N + kh)γ+1

r(N + kh)

(
τ(N + kh)

N + kh+ h

)γ

p(N + kh)h > 1, (3.19)

where N is sufficiently large. Then every solution of equation (1.21) is oscilla-
tory.

4. Examples

In this section we give some examples to illustrate the main results. The first
example is for the advanced equation and the second example is for the delay
equations.

Example 1. Consider the dynamic equation

x∆∆(t) +
α
√
σ(t)− 1

t3/2
√
t− 1

∣∣∣x1/2(2t)
∣∣∣
∣∣x∆(t)

∣∣1/2 sgnx(2t) = 0, for t ∈ [1,∞)T. (4.1)

Here γ = 1/2, a(t) = 1, p(t) =
α
√

σ(t)−1

t3/2
√
t−1

and τ(t) = 2t > t. So that

P (t, T ) =

∫ t

T

(
1

a(τ)

) 1
γ

∆τ = (t− 1),

Q(t) = γp(t)

(
a(t)P (t, 1)

a(t)P (t, 1) + σ(t)− t

)γ

=
α
√
σ(t)− 1

2t3/2
√
t− 1

(
t− 1

(t− 1) + σ(t)− t

) 1
2

=
α

2t3/2
.

Now, we apply Theorem 2.2. In this case it is clear that the conditions (h1)−(h2)
hold. It remains to satisfy the condition (2.11). In this case the condition reads

p∗ := lim inf
t→∞

t
1
2

a(t)

∫ ∞

σ(t)

Q(s)∆s =
α

2
lim inf
t→∞

t
1
2

∫ ∞

σ(t)

1

s3/2
∆s

≥ α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

1

σ(s)s1/2
∆s

≥ α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

( −1

s1/2

)∆

∆s =
α

2
l1/2.

Then by Theorem 2.2, if

α >
4

9

√
6√

l 4
√
l
,

then every solution of the solution x(t) of (4.1) oscillates.
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Example 2. Consider the third-order dynamic equation

x∆∆(t) +
ασ

1
2

t3/2τ
1
2 (t)

∣∣∣x1/2(τ(t))
∣∣∣
∣∣x∆(t)

∣∣1/2 sgnx(τ(t)) = 0, τ(t) ≤ t, (4.2)

for t ∈ [1,∞)T limt→∞ τ(t) = ∞. Here a(t) = 1, and p(t) = ασ(t)
1
2

t3/2τ
1
2 (t)

. It is clear

that (h1) − (h2) holds. To apply Theorem 2.4, it remains to prove that (2.30)
holds. For equation (4.2), we have

lim inf
t→∞

t1/2
∫ ∞

σ(t)

γp(s)

(
τ(s)

σ(s)

)γ

∆s

=
α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

σ(t)
1
2

t3/2τ
1
2 (t)

(
τ(s)

σ(s)

)γ

∆s

=
α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

1

s3/2
∆s ≥ α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

1

σ(s)s1/2
∆s

≥ α

2
lim inf
t→∞

t1/2
∫ ∞

σ(t)

( −1

s1/2

)∆

∆s =
α

2
l1/2.

Then by Theorem 2.4, the solutions of (4.2) are oscillatory if α > 4
9

√
6√

l
4√
l
.
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