The seasonal adjustment is an essential process in analyzing the time series of economy and business. There are various methods to adjust seasonal effect such as moving average, extrapolation, smoothing and X11. One of the powerful adjustment methods is X11-ARIMA Model which is popularly used in Korea. This method was delivered from Canada. However, this model has been developed to be appropriate for Canadian and American environment. Therefore, we need to review whether the Xl1-ARIMA Model could be used properly in Korea. In this study, we have applied the method to the annual sales of refrigerator sales in A electronic company. We appreciated the adjustment by result analyzing the time series components such as seasonal component, trend-cycle component, and irregular component, with the proposed method.
Due to the frequent emergence of global abnormal climates, related studies on meteorological change is being actively proceed. However, the research on trend analysis using weather data accumulated over a long period of time was insufficient. In this study, the trend of temperature time series data accumulated from automated surface observing system (ASOS) for 40 years was analyzed by using a non-parametric analysis method. As a result of the Mann-Kendall test on the annual average temperature and seasonal average temperature time series data in South Korea, it has shown that an upward trend exists. In addition, the result of calculating the Sen's slope, which can determine the degree of tendency before and after the searched change point by applying the Pettitt test, recent data after the fluctuation point confirmed that the tendency of temperature rise was even greater.
Journal of the Korean Data and Information Science Society
/
v.20
no.5
/
pp.765-777
/
2009
Our study aimed to illustrate long term trend in 10 micrometer particular matters excluding confounding effect. Daily 10 micrometer particular matters data were measured in 27 places and meteorological data (maximum temperature, humidity and maximum wind speed, solar radiation) were obtained from the national institute of environmental research for the period from January, 1996 to December 2000. To estimate the increasing and decreasing long term trend in a set of observed data, set up the model. The model included regression spline smooth function on the time and meteorological factors to capture the seasonal time trend and any possible nonlinear relationship. The result was estimated to decrease slightly after adjusting for meteorological factors and seasonal time trend.
In this paper we analytically study model misspecification that arises in regression analysis of nonstationary seasonal time series. We assume the underlying data generating process is a seasonally or a regularly and seasonally integrated process. We first study consequences of totally misspecified cases where seasonal indicator variables, a linear time trend, or another statistically independent seasonally integrated process are used as predictor variables in order to model the nonstationary seasonal behavior of the dependent variable. Then we study consequences of partially misspecified cases where the dependent variable and a predictor variable are cointegrated at some, but not all of the frequencies corresponding to the nonstationary roots.
The seasonal adjustment is an essential process in analyzing the time series of economy and business. One of the powerful adjustment methods is X11-ARIMA Model which is popularly used in Korea. This method was delivered from Canada. However, this model has been developed to be appropriate for Canadian and American environment. Therefore, we need to review whether the X11-ARIMA Model could be used properly in Korea. In this study, we have applied the method to the annual sales of refrigerator sales in A electronic company. We appreciated the adjustment by result analyzing the time series components such as seasonal component, trend-cycle component, and irregular component, with the proposed method. Additionally, in order to improve the result of seasonal adjusted time series, we suggest the demand forecasting method base on autocorrelation and seasonality with the X11-ARIMA PROC.
The purpose of this study is to analyze the seasonal characteristics of water quality using long-term water quality monitoring data. Seasonal characteristics of water quality were analyzed using monitoring data from 34 tributaries where long-term monitoring was performed in the Nakdong River system, and average data analysis of water quality, coefficient of variation analysis, and trend analysis were performed for seasonal analysis. For seasonal analysis, average data analysis of water quality, coefficient of variation analysis, and trend analysis were performed. As a result of the evaluation of the coefficient of variation, tributaries were larger than main streams, and BOD, T-P, and TOC were larger in autumn and T-N were larger in spring. Trend analysis was analyzed using Mann-Kendall and Sen's Slope. BOD, T-N, and T-P tended to decrease, but TOC had a lot to increase. Through this study, it was possible to evaluate the availability of long-term water quality monitoring data and analyze seasonal characteristics, and to analyze the stabilization period of water quality and changes in pollutant sources for watershed management.
Journal of The Korean Society of Agricultural Engineers
/
v.61
no.1
/
pp.21-29
/
2019
This study analyzed the variability of drought risk based on trend analysis of dry-seasonal dam inflow located in upper river basins. To this, we used areal averaged precipitation and dam inflow of three upper river dams such as Soyang dam, Chungju dam, and Andong dam. We employed Mann-Kendall trend analysis and change point detection method to identify the significant trends and changing point in time series. Our results showed that significant decreasing trends (95% confidence interval) in dry-seasonal runoff rates (= dam inflow/precipitation) in three-dam basins. We investigated potential causes of decreasing runoff rates trends using changes in potential evapotranspiration (PET) and precipitation indices. However, there were no clear relation among changes in runoff rates, PET, and precipitation indices. Runoff rate reduction in the three dams may increase the risk of dam operational management and long-term water resource planning. Therefore, it will be necessary to perform a multilateral analysis to better understand decreasing runoff rates.
Jung, Kang Young;Ahn, Jung Min;Cho, Sohyun;Lee, Yeong Jae;Han, Kun Yeun;Shin, Dongseok;Kim, Kyunghyun
Membrane and Water Treatment
/
v.10
no.5
/
pp.339-352
/
2019
Long term water quality change was analyzed to evaluate the effect of the Total Maximum Daily Load (TMDL) policy. A trend analysis was performed for biochemical oxygen demand (BOD) and total phosphorus (TP) concentrations data monitored at the outlets of the total 41 TMDL unit watersheds of the Nakdong River in the Republic of Korea. Because water quality data do not usually follow a normal distribution, a nonparametric statistical trend analysis method was used. The monthly mean values of BOD and TP for the period between 2004 and 2015 were analyzed by the seasonal Mann-Kendall test and the locally weighted scatterplot smoother (LOWESS). The TMDL policy effect on the water quality change of each unit watershed was analyzed together with the results of the trend analysis. From the seasonal Mann-Kendall test results, it was found that for BOD, 7.8 % of the 41 points showed downward trends, 26.8 % and the rest 65.9% showed upward and no trends. For TP, 51.2% showed no trends and the rest 48.8% showed downward trends. From the LOWESS analysis results, TP began to decrease in most of the unit watersheds from mid-2010s when intensive chemical treatment processes were introduced to existing wastewater treatment plants. Overall, for BOD, relatively more points were improved in the main stream compared to the points of the tributaries although overall trends were mostly no trend or upward. For TP, about half of the points were improved and the rest showed no trends.
To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean $PM_{10}$ into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean $PM_{10}$ decreased sharply from $59.6ug/m^3$ in 2002 to $44.6ug/m^3$ in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term $PM_{10}$ is small. Therefore, we can conclude that $PM_{10}$ is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.