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Durbin-Watson Type Unit Root Tests for the
Deterministic Trend Models'

Byungsoo Kim! Sinsup Cho? and Kook-Lyeol Choi?

ABSTRACT

We have developed a “Durbin-Watson type” test statistics for regular
and seasonal unit roots in the deterministic trend models. The limiting
distributions of the proposed test statistics are the functionals of standard
Brownian motions. Finite distributions of the test statistics for selected
seasonal periods, if any, are numerically obtained using the Imhof routine.
The powers and sizes of the test statistics are examined for finite samples
and compared with those of the DF-type tests. Simulation results showed
that the DW-type tests have good behaviors against the DF-type tests for
all models considered.

Keywords: Generalized Durbin-Watson statistics; Regular unit root; Seasonal
unit root; Deterministic trend; Standard Brownian motions; Imhof routine

1. INTRODUCTION
Consider a time series model of the form
Yy =x8+ u, (L.1)
where {x;} is a deterministic sequence. If {u,;} satisfies

up = Qui—y + €, (1.2)
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where ¢;'s are independently and identically distributed (i.i.d.) random variables
with mean zero and variance o2, the models (1.1) and (1.2) are jointly represented
by

Y: = @Y1 + (x¢ — ¢x—1)'B + €. (1.3)

The traditional Dickey-Fuller (DF) regular unit root test procedures test Hp :
¢ = 11in (1.3). For the seasonal time series one may consider {u;} which satisfies

up = Quy_s + €, (1.4)

where s is the seasonal period. The models (1.1) and (1.4) can be jointly repre-
sented by

Y = @Y s + (x¢ — q)xt—a)’ﬂ + €, (1.5)

and DF seasonal unit root test procedures test Hp : ® = 1 in (1.5).

Bhargava (1986), Nabeya and Tanaka (1990), and Tanaka (1996) developed
regular unit root tests for the deterministic trend models using the generalized
Durbin-Watson (DW) statistics

n

o ~ 2
Z Up — Uk
dk= (_—'I_‘L_—A2)_’ k=1,...,n—-1,
=kt 1 PINER

where @, are the residuals of the regression model (1.1). Kim and Cho (1998) also
considered the DW-type unit root tests for the regular and seasonal time series
models.

In this paper we develop the DW-type regular and seasonal unit root tests
for the deterministic trend models and compare the performances with those of
the DF-type unit root tests proposed by Dickey and Fuller (1979) and Cho et al.
(1995), respectively. The advantages of the DW-type unit root tests over DF-type
tests are that the calculation of the exact finite distributions and powers are easy
and the extension to the general models and wide class of tests are much flexible.
These advantages are presented by an example.

2. Regular unit root tests

Let {Y;} satisfy the following deterministic trend models

Yi=p+at+u, u=du1+es, (2.1)
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or

s
Yi=) Bibje+t+u, u=du1+e, (2.2)
j=1
where ¢ ~ i.i.d.(0,02) and d;¢’s are the indicator functions such that d;; = 1 if ¢
is in j-th season or 0 otherwise. Model (2.2) implies the possibility of a regular
unit root for a seasonal time series. Note that models (2.1) and (2.2) can be
represented by

Vi=(1-¢u+ap+(1-gat+¢Yi 1 +e, (2.3)
and
Yo=Y (8 — 6818 + 1+ (1 — $)vt + ¢¥iy +es. (2.4)
j=1

Models (2.3) and (2.4) are used for the DF-type tests.
Assume that n = ms for simplicity where m is a integer. For the test of

Hy : ¢=1, Hy: |4 <1,
we define DW-type test statistics for models (2.1) and (2.2) as
StV — Y1 - a)°
i -p—at)?’
YooY — Yioy — 350085 — Bi-1)85t — 4)?
2t (Yo — 20521 Bidje — 4t)?

where & = ;o 0 (- 2P )Y, o = ¥V - 62, 4 = gpndey Tk (8 -
3= i0it) Y, B; = Y; — 4tj, and o = B, where ¥; = LS Yi-1)s+; and
tj = (m —1)s/2+ j. Note that R3; and R3; are independent of u, c, 8;'s, and v
under both Hy and Hy, and independent of Y; under Hy. In the followings, “="
means convergence in distribution.

R3;

R,

bl

Theorem 1. Under Hy: ¢ =1, nR31 and nR3z have the same limiting distri-
bution

1
JEW2(r)dr — {f] W (r)dr}2 — 12{ [y (r — H)W(r)dr}?’

nR31, nR32 =

where W(r) is a standard Brownian motion.
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The limiting distribution of nR3; are given in Tanaka (p. 340, 1996) and the
derivation of the limiting distribution of nR3, is given in the Appendix. Note
that Rs; and R3; are Op(n~!) under Hy and Op(1) under H,. By rewriting Rj3;
and Rj3; in quadratic forms, the exact distributions and the powers of nR3; and
nR3z can be obtained following Imhof (1961) with the additional assumption of
normality for {e;}.

In Table 1 and 2 we provide the exact distributions of nR3; and nR3; numer-
ically calculated by the Imhof routine for various sample sizes under Hy : ¢ = 1
for models (2.1) and (2.2). Without loss of generality, we assume that y, a, §;’s,
v, and Y; are all zeros.

We obtain the exact powers of the DW-type test statistic nR3; and the DF-
type pr test statistic for model (2.1) in Table 3. For power comparisons we
consider the DF-type test statistics g, = n(dgf — 1) following Dickey and Fuller
(1979), where ¢, is the ordinary least squares estimate (OLSE) of ¢ in model
(2.3). In this paper, we do not consider the pivotal statistics (t-statistics), since,
for example, the pivotal statistic 7, is less powerful than g, as shown in Dickey
et al. (1986), and so on. Without loss of generality we assume that p = 0,
a=0,and Y] ~ N(0,1/(1 — ¢?)). The significant level is 0.05 and the sample
sizes considered are n = 25, 50, 100, 200, and 500. The critical values of the DW-
type test statistic are obtained from Table 1. The distributions and powers of
the DF-type test statistic p, are also calculated using the Imhof routine. The
obtained critical values are —17.956, —19.695, —20.666, —21.178, and —21.496,
respectively.

Table 4 compares the powers of the DW-type test statistic nR3z and the DF-
type test statistic s = n(¢,s — 1) for model (2.2), where ¢,, is the OLSE of
¢ in model (2.4). Without loss of generality, we assume that g; = 0 for all j,
4 =0, and Y; ~ N(0,1/(1 — ¢?)). The critical values of the DW-type test statis-
tic are obtained from Table 2, and the powers of this statistic are obtained using
the Imhof routine. The distributions and powers of the DF-type test statistic
prs are obtained using the simulation method with 50,000 and 10, 000 iterations,
respectively. The critical values of p,s are —18.233, —19.223, —19.806, —20.194,
—20.985, and —21.494 for s = 4 and —19.287, —19.678, —20.154, —20.565,
—20.960, and —21.219 for s = 12 corresponding to the sample sizes in Table
4, respectively.

We have observed from table 3 and 4 that the DW-type tests performs better
than the DF-type tests for models (2.1) and (2.2). It should be remarked that
though the OLSE are used for the comparison in this paper we may be able



Durbin-Watson Type Unit Root Tests 601

to use other types of the DF-type test statistics based on the generalized least
squares (GLS) or maximum likelihood (ML) estimates as indicated in Pantula et
al. (1994).

3. Seasonal unit root tests

Let {Y;} follow seasonal deterministic trend models with period s,

8

1 = Z(uj + 9 T)05 +up,  up = Pup, + €y, (3.1)
Jj=1
or
§
Y; = Z'Bj‘sjt + vt +u,  ur = Pup—s + €, (3.2)
=1

where €, ~ i.i.d.(0,02), d;¢'s are the seasonal indicator functions, and 7 = [(¢t —
1)/s+ 1] with [x] denoting the largest integer no larger than z. In model (3.1) the
means and trends parameters, 4;’s and v;’s, are separately determined according
to the corresponding seasons. The trend parameter is common for all seasons in
model (3.2) which may be more practical than model (3.1) in most cases. Note
that models (3.1) and (3.2) can be represented by

Yo= {(1 - @)u;+ v + (1 - 2)y;)7}b5 + e, (3.3)
=1
and
8
Y= (1— )86 + 572+ (1 — D)yt + DYy, + . (3.4)
i=1

Models (3.3) and (3.4) are used for the DF-type tests.
Assume that n = ms for simplicity where m is a integer. For the test of

Hy : =1, H; : |9 <1,
we define DW-type test statistics for (3.1) and (3.2) as, respectively,

Say = 2:‘=3+1(Yt Y- Z;=1 ’7j51t)2 g = E?=s+1(Yt Y s — 3'7)2
te1 (Yo = 20520 (85 +457)05)% (Y~ X5y Bidie — 412
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where §; = —fs T (1= ) Y1y, 5 = V=4 2L, 4 = Ty Lot (-
j=1%0;t)Ys, and B; = ¥; — 4%;, where ¥; = m™1 3% Vy_1),,; and §; =

(m —1)s/2 + j. Note that S3; and S3; are independent of u;’s, v;'s, Bj’s, and

7, respectively, under both Hy and H;. And these statistics are independent of

Yi,...,Ys under Hy.

Theorem 2.  Under Hy: ® = 1, nS3; and nSs32 have the limiting distributions,
respectively,

52

St [fo W2()ar — {3 Wi(r)dr)2 — 12( [} (r — D)W, (r)dr}Z] ’

32

3o [0 WRE)r = {3 Wy(nary?] - 12571 [T, f3 0~ HW;(r)ar]

nS31 =

nS32 =

where W;(r)’s are the mutually independent standard Brownian motions.

The first part of Theorem 2 is an immediate consequence of Theorem 1 and
the second part is obtained from Cho et al. (1997). Note that S3; and Ss
are Op(n™!') under Hy and O,(1) under Hj, respectively. With the additional
assumption of normality for {¢;} we may rewrite S3; and S32 in quadratic forms,
so we can obtain the exact distributions and powers of nSs; and n.S3; using the
Imhof routine.

Table 5 and 6 show the exact distributions of nS3; and nSs; numerically
calculated by the Imhof routine for various sample sizes under Hy : & = 1 for
models (3.1) and (3.2). Without loss of generality, we assume that u,’s, v;'s, Bj’s,
v, and Y1,...,Y; are all zeros.

We obtain the exact powers of the DW-type test statistic, nS3;, and the DF-
type test statistic g3; for model (3.1) in Table 7. For the power comparisons we
consider the DF-type test statistics g3; = n(®3; — 1) due to Cho et al. (1995),
where &j; is the OLSE of ® in model (3.3). Without loss of generality we assume
that 4; = 0 and «; = 0 for all j and that for 1 < j < s, ¥; ~ N(0,1/(1 — ®?))
independently. The significant level is 0.05 and the critical values of the DW-
type test statistic are obtained from Table 5. The distributions and powers of
the DF-type test statistic g3; are also obtained using the Imhof routine with the
critical values —41.500, —44.601, —46.329, —47.424, —49.750, and —50.984 for
s =4 and —93.460, —105.508, —111.130, —114.179, —116.088, and —120.081 for
s = 12 corresponding to the sample sizes in Table 7, respectively.
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Table 8 compares the exact powers of the DW-type test statistic nS33 and the
DF-type test statistic pso = n(®32 — 1) for model (3.2), where &35 is the OLSE
of ® in model (3.4). Without loss of generality, we assume that 8; = 0 for all
j,v=0,and for 1 < j < s, Y; ~ N(0,1/(1 — ?%)). The critical values of the
DW-type test statistic are obtained from Table 2. The distributions and powers
of the DF-type test statistic j3» are obtained using the Imhof routine with the
critical values —28.470, —29.646, —30.272, —30.661, —31.463, and —31.876 for
s = 4 and —56.326, —59.002, —60.038, —60.577, —60.903, and —61.571 for s = 12
corresponding to the sample sizes in Table 8, respectively.

As in the regular unit root cases it is observed that the DW-type tests performs
better than the DF-type tests for the seasonal models (3.1) and (3.2).

4. Example and discussions

An example is presented in order to clarify some of the concepts involved.
The example consists of simulated data generated by model (2.2).

Example We simulate a quarterly seasonal data of sample size 100 from (2.2),
where s = 4,81 = 2,82 = 4,83 = 6,84 =4,¢ = 1,7 = 0.5, and ug = 0. Figure 4.1
is the time plot of the simulated data.

v
481

28]

19

0 19 28 30 L1 11 ] (1] 70 L1 90 160

Figure 4.1: Time plot of Y; generated from (2.2).

Figure 4.1 shows the increasing time trend and the seasonal patterns. For the
unit root tests, we may consider the regular unit root test based on (2.2) and the
seasonal unit root test based on (3.2), if we do not know the true model. Since
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Figure 4.2: Time plot of the residuals of the regression model Y; = 23':1 Bjdjt +
’)’t + ug.

this series shows the seasonality and the common time trend, we do not consider
(2.1) nor (3.1). We calculate nR3 and nSs;, and the p-values using the Imhof
routine. The obtained value of nRsq is 25.53 with the p-value 0.229, and nS3»
is 117.78 with the p-value 0.000. Thus, in this case, the regular unit root test
based on (2.2) is more suitable than the seasonal unit root test based on (3.2),
which is supported by Figure 4.2. Figure 4.2 is the time plot of the residuals of
the regression model Y; = Z;:l B;jdjt + vt + ug, which shows the non-seasonality
and the strong first-order autocorrelation.

Figure 4.1 may be the typical time plot of the seasonal time series, especially
for a economic time series data. However, in many cases, we do not know the
true model. In the analysis of a seasonal time series similar to Figure 4.1, it is
recommended to consider not only model (3.2) but also model (2.2) for the unit
root test.

For this example, the DF-type test statistic 3z is —65.05 with p-value 0.000,
while p,s is —11.20. We do not provide the p-value of p.s, since it requires a
messy calculation by hand to obtain the distribution of the p-value of DF-type
test using the Imhof routine. This is because the quadratic form of the test
statistic is complicated and the design matrix includes the lagged variable of
Y,. Therefore, the distribution has to be calculated by hand for each model. In
General, the more the considered model is complicated the more the calculation
of the p-value of the DF-type test becomes difficult. On the other hand, the
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DW-type test statistics can be easily expressed in the quadratic form. Therefore,
the distribution tables of the DW-type tests are not necessary and we can obtain
(automatically) the p-values as well as the distributions and the powers. This is
one of the advantages of the DW-type tests over DF-type tests.

APPENDIX : Proof of Theorem 1

For simplicity, we denote fol W (r)dr as [ W and assume n = ms where s is
a seasonal period. And we assume that 8;’s and + are all zeros, and that ¢ = 1.
First, note that

Y-S = Y-
t=1 j=1

Y ";f i+ Opn)

t=1

))Y:

Thus,

124 — pl/2+5/2 o n=5/2 _
o= on s3m(m2—1 /Zt Zt’ %it) s

= 05[12/(7' - ~2-)W]

The numerator part of R3; is

n 8

t=2 j=1

since, for j > 1

1
Yi=Yjo1 = —(e+erjt o +ema1)ets)
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and for j =1
~ — 1
Y; =Y., = E(Yl + €41t + €m_1)s41 — Yn)
= Op(n7'?).
Therefore,
n 3 . .
nTt Y (Vo= Yie1 =) (Bj — Bj-1)8;t —4)° = of in probability. (A1)
t=2 j=1

The denominator part of R3s is

n

Y W=D Bidi—)? = Y (Vi (¥; - 4E)d5 — #t)?

t=1 j=1 t=1 j=1
n 8 3 2
- 28°m(m* —1)
= > - Y it -4
t=1 j=1 12
- YV -mY gl
J
t=1 i=1 12

Note that Y;—Y = 1 % | a.e;, where —s < a; < s such that ¥;—Y = Op(n~1/2).
Since n"}/2Y = o, [ W, we can obtain that n12Y; =g, [Wiorall<j<s.
Therefore,

—2n(Y_sB.5.__*t2 w? — W} -12 —1W2- (A2
w3 0- 3 hse =t [wh - ([wp-n(fe-pwr. a

From (A1) and (A2), we obtain the limiting distribution of nR3; as

1
Jw2—{fW} - 12{f(r - PW}?

nR3 =
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Table 1. Distributions of nRg3; for various sample sizes ¢

0.01

0.025

Probability of a smaller value

0.05

0.10

0.20

0.80

0.90

0.95

0.975 0.99

25
50
100
200
500

4.856
4.721
4.656
4.624
4.605

5.776
5.704
5.669
5.652
5.641

6.772
6.765
6.763
6.763
6.762

8.197
8.289
8.337
8.363
8.378

10.390
10.651
10.788
10.858
10.901

24.393
26.389
27.485
28.061
28.415

29.452
32.412
34.068
34.946
35.490

33.957
37.952
40.227
41.444
42.203

38.043 42.937
43.143 49.582
46.089 53.506
47.682 55.639
48.680 56.992

¢ The

entries are obtained using the Imhof routine.

Table 2. Distributions of nR3, for various sample sizes ¢

0.01

Probability of a smaller value

0.025

0.05

0.10

0.20

0.80

0.90

0.95

0.975

0.99

40
60
80
100
200
400

4.500
4.535
4.550
4.559
4.578
4.585

5.423
5.497
5.533
5.555
5.595
5.616

6.420
6.535
6.592
6.627
6.695
6.728

7.848
8.024
8.113
8.167
8.277
8.332

seasonal period s =4

10.045
10.326
10.471
10.560
10.741
10.835

24.539
25.753
26.416
26.832
27.711
28.175

30.072
31.743
32.669
33.256
34.504
35.167

35.162
37.307
38.505
39.271
40.915
41.797

39.936
42.562
44.054
45.012
47.074
48.184

45.866
49.148
51.051
52.271
54.931
56.371

72
120
180
240
300
600

4.176
4.350
4.434
4.475
4.499
4.547

5.093
5.314
5.423
5.477
5.509
5.572

6.086
6.354
6.489
6.557
6.598
6.680

seasonal period s = 12

7.513
7.846
8.020
8.110
8.164
8.275

9.723
10.159
10.400
10.526
10.604
10.763

24.985
26.041
26.769
27.184
27.452
28.026

31.209
32.432
33.350
33.890
34.240
35.006

37.137
38.491
39.584
40.244
40.678
41.635

42.862
44.325
45.590
46.369
46.882
48.037

50.190
51.797
53.273
54.203
54.832
56.254

¢ The entries are obtained using the Imhof routine.
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Table 3. Powers of nR3; and p, at the 5% level ¢

Test ¢
n statistics| .99 .98 95 .90 85 .80
25 nR3y .050 .051 .053 .063 077 .098
Pr .050 .051 .053 .062 .075 .095
50 nRs; .051 .052 .063 .097 157 .248
Pr 051 052 062 .095 151 237
100 nRa; .052 .059 097 .240 491 .759
pr .052 .058 .094 231 471 738
200 nRs; .059 .080 .237 742 .082 1.00
Pr .058 .079 227 721 978 1.00
500 nRj3 .096 234 .908 1.00 1.00 1.00
Pr .094 225 .894 1.00 1.00 1.00
¢ The entries are obtained using the Imhof routine.
Table 4. Powers of nR3; and j,, at the 5% level ¢
Test ¢ ¢
statistics n 99 98 95 90 8 .80 n 99 98 95 90 85 .80
seasonal period s = 4 seasonal period s = 12
nRaz 40 .050 .052 .058 .080 .117 .172 72 051 .055 .075 .144 .274 .451
Prs .049 .053 .059 .083 .114 .168 .049 .050 .070 .130 .250 .408
nR3z 60 .051 .053 .068 .117 .204 .337 | 120 .053 .062 .115 .324 .645 .893
Prs 052 .055 .068 .116 .193 .331 .051 .057 .116 .308 .620 .872
nRaz 80 .052 .056 .080 .169 .332 .552 | 180 .057 .075 .199 .640 .951 .998
Prs .050 .059 .077 .162 .311 .533 .058 .078 .191 .623 .942 .997
nhjz 100 .052 .059 .096 .240 489 .757 | 240 .062 .093 .321 .885 .998 1.00
Prs .048 .060 .093 .224 464 .726 .057 .091 .305 .866 .998 1.00
nhaz 200 .059 .080 .236 .741 .982 1.00 | 300 .068 .115 .473 .980 1.00 1.00
Prs .058 .080 .221 .718 .976 1.00 062 .112 433 .973 1.00 1.00
nR3z 400 .080 .166 .733 1.00 1.00 1.00 | 600 .115 .318 .979 1.00 1.00 1.00
Prs .076 .157 .710 .999 1.00 1.00 118 .303 972 1.00 1.00 1.00

¢ The Imhof routine for nR3; and the simulation method for p-, are used.
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Table 5. Distributions of nS3; for various sample sizes ¢
Probability of a smaller value

n 0.01 0.025 0.05 0.10 0.20 0.80 0.90 0.95 0.975 0.99

seasonal period s =4
40 30.568 33.092 35.524 38.639 42.864 63.127 69.266 74.496 79.116 84.534
60 30.554 33.453 36.237 39.799 44.637 68.430 75.903 82392 88.220  95.182
80 30.574 33.656 36.618 40.411 45.575 71.346  79.596 86.830  93.383 101.292
100 30.594 33.785 36.853 40.789 46.156  73.191 81.947 89.670 96.706 105.253
200 30.641 34.055 37.342 41.570 47362 77.117 86.991 95806 103.930 113.927
400 30.668 34.193 37.594 41.974 47.988 79.209 89.702 99.130 107.864 118.680

seasonal period s = 12
60 | 105.846 109.086 112.097 115.819 120.666 141.868 147.793 152.705 156.955 161.860
120 | 111.791 117.425 122.562 128.807 136.833 171.892 182.048 190.693 198.358 207.426
180 | 114.355 120.809 126.695 133.866 143.106 184.028 196.103 206.468 215.734 226.798
240 | 115.723 122.602 128.884 136.543 146.438 190.609 203.773 215.126 225.319 237.558
300 | 116.563 123.711 130.234 138.200 148.504 194.741 208.606 220.597 231.398 244.387
600 | 118.326 126.001 133.028 141.635 152.797 203.452 218.839 232.229 244.346 259.017

¢ The entries are obtained using the Imhof routine.
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Table 6. Distributions of nS3; for various sample sizes ¢
Probability of a smaller value

n 0.01 0.025 0.05 0.10 0.20 0.80 0.90 0.95 0.975 0.99

seasonal period s =4
40 | 11.166 12.652 14.181 16.287 19.408 37.745  43.982 49.467 54.430 60.379
60 | 11.154 12.762 14.417 16.689 20.051 40.020 47.012 53.263 59.009 66.019
80 | 11.156 12.827 14.541 16.896 20.381 41.234  48.646 55.329 61.517  69.137
100 | 11.160 12.866 14.618 17.023 20.583 41.988  49.667 56.626 63.105 71.116
200 | 11.173 12.950 14.7756 17.282 20.994 43.561 51.812 59.369 66.469 75.352
400 | 11.182 12.994 14.857 17.414 21.203 44.381 52.938  60.818 68.261 77.626

seasonal period s = 12
60 | 41.224 43.774 46.211 49.320 53.550 74.834 81.681 87.663 93.063  99.507
120 | 41.958 45.279 48.430 52.432 57.848 85.073 93.964 101.834 109.034 117.810
180 | 42.346 45.920 49.314 53.621 59.455 88.927 98.640 107.289 115.241 124.992
240 | 42.564 46.267 49.781 54.244 60.292 90.953 101.108 110.181 118.550 128.848
300 { 42.699 46.481 50.069 54.628 60.808 92.204 102.637 111.973 120.602 131.246
600 | 42.990 46.929 50.665 55.417 61.865 94.785 105.800 115.702 124.874 136.241

¢ The entries are obtained using the Imhof routine.
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Table 7. Powers of nS3; and p3; at the 5% level ¢

Test ¢ $
statistics n 99 98 95 .90 .8 .80 n 99 98 95 .90 .85 .80
seasonal period s =4 seasonal period s = 12
nS31 40 .050 .050 .052 .056 .063 .073 | 60 .050 .050 .051 .052 .055 .059
P31 .050 .050 .051 .055 .061 .070 .050 .050 .050 .052 .054 .056
nSa1 60 .050 .051 .054 .064 .081 .107 | 120 .050 .050 .053 .062 .07Y8 .102
P31 .050 .051 .053 .063 .078 .102 .050 .050 .053 .061 .075 .097
nSa1 80 .050 .051 .056 .075 .108 .161 { 180 .050 .051 .057 .080 .123 .197
P31 050 .051 .056 .073 .103 .151 .050 .051 .057 .077 .117 .183
nSa1 100 .050 .052 .060 .090 .146 .238 | 240 .051 .052 .063 .107 .200 .359
p31 .050 .052 .059 .087 .138 .222 .051 .052 .062 .103 .186 .330
nSa 200 .052 .057 .090 .236 .517 .813 | 300 .051 .054 .071 .148 .315 .573
p3a .052 .056 .087 .221 .484 .780 .051 .053 .070 .139 .290 .530
nSs 400 .057 .076 .234 .799 .995 1.00 | 600 .054 .064 .150 .569 .951 1.00
Pa .056 .074 .220 .767 .992 1.00 .053 .063 .141 .527 .931 .999
¢ The entries are obtained using the Imhof routine.
Table 8. Powers of nS32 and p32 at the 5% level ¢
Test ¢ ¢
statistics n 99 98 95 .90 .85 .80 n .99 98 95 .90 .85 .80
seasonal period s =4 seasonal period s =12
1S3z 40 .053 .056 .066 .087 .117 .156 | 60 .053 .057 .068 .091 .121 .159
paz .052 .055 .064 .084 .110 .144 .053 .056 .066 .088 .114 .147
nS32 60 .054 .059 .076 .118 .182 .271 | 120 .057 .065 .096 .174 .292 .446
P32 .0564 .058 .074 .111 .167 .245 .0567 .064 .091 .158 .257 .390
1S3 80 .056 .062 .089 .159 .272 426 | 180 .061 .075 .133 .300 .543 .781
P32 .055 .061 .085 .147 .246 .383 .060 .073 .123 262 .472 .702
nS32 100 .057 .066 .103 .210 .384 .599 | 240 .066 .086 .180 .461 .784 .957
P32 057 065 .098 .192 .345 544 064 082 .162 .399 .704 916
nSa2 200 .066 .089 .211 .592 .913 .994 | 300 .071 .098 .238 .634 .931 .996
P32 .065 .08 .193 .539 .875 .988 .069 .093 .210 .555 .877 .988
nS32 400 .089 .160 .588 .994 1.00 1.00 | 600 .099 .183 .637 .996 1.00 1.00
P32 .086 .149 .536 .986 1.00 1.00 .093 .164 .557 .987 1.00 1.00

¢ The entries are obtained using the Imhof routine.




