• 제목/요약/키워드: seasonal predictability

검색결과 50건 처리시간 0.026초

PNU CGCM-WRF Chain을 이용한 남한 지역 폭염 장기 계절 예측성 평가 (Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain)

  • 김영현;김응섭;최명주;심교문;안중배
    • 대기
    • /
    • 제29권5호
    • /
    • pp.671-687
    • /
    • 2019
  • This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.

기후예측시스템(GloSea5) 열대성저기압 계절예측 특성 (Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast)

  • 이상민;이조한;고아름;현유경;김윤재
    • 대기
    • /
    • 제30권3호
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측 (Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors)

  • 김화수;곽종흠;소선섭;서명석;박정규;김맹기
    • 한국지구과학회지
    • /
    • 제23권7호
    • /
    • pp.587-596
    • /
    • 2002
  • 경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.

PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발 (Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1)

  • 안중배;이수봉;류상범
    • 대기
    • /
    • 제22권4호
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

대기 대순환 모헝과 해수면 온도 관측 자료를 이용한 태풍 활동의 계절 예측 가능성 (Seasonal Predictability of Typhoon Activity Using an Atmospheric General Circulation Model and Observed Sea Surface Temperature Data)

  • 한지영;백종진
    • 한국지구과학회지
    • /
    • 제27권6호
    • /
    • pp.653-658
    • /
    • 2006
  • 대기 대순환 모형인 GCPS를 이용하여 북서태평양에서의 태풍 활동의 계절 예측 가능성을 조사하였다. 1979년부터 2003년까지 각 해에 대해 해수면 온도 관측 자료를 사용하여 5개월간 초기 조건을 달리한 10개의 앙상블 멤버를 적분하였다. 모형은 발생 빈도의 평균적인 월변화 경향과 발생 분포를 관측과 유사하게 모의하였으나, 발생 빈도의 경년 변화는 신빙성 있게 예측하지 못하였다. 이는 관측과 모형간 태풍 발생 빈도와 ENSO의 상관성 차이에 인한 것으로 실제 태풍 발생 빈도와 ENSO가 뚜렷한 상관 관계를 갖지 않는 것과 달리, 모형에서는 엘니뇨 시기에 평년에 비해 많은 태풍이 발생하고 라니냐 시기에 평년에 비해 적은 태풍이 발생하는 경향을 보였기 때문이다. 반면에, 관측과 모형 모두 ENSO와의 상관 관계가 높게 나타난 태풍 발생 경도의 경우에는 모형이 발생 경도의 경년 변화를 관측과 유사하게 모의하였다.

다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상 (Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique)

  • 이승수;김가영;윤순조;안현욱
    • 한국수자원학회논문집
    • /
    • 제52권7호
    • /
    • pp.475-482
    • /
    • 2019
  • 2주에서 2개월까지 선행기간을 가지는 계절내-계절(Subseasonal-to-Seasonal, S2S) 예측결과는 산업전반에 걸쳐 다양한 분야에 활용이 가능할 것으로 기대되고 있으나, 일기예보나 중장기 예보대비 낮은 예측성으로 인하여 현재까지 활용성이 매우 낮은 실정이다. 본 연구에서는 기계학습 기법중 비선형회귀 분야에서 좋은 결과를 보여주는 다층퍼셉트론 기법을 이용하여 S2S 예측자료의 후처리를 통한 국내 영역에서의 강수예측성 향상에 관한 연구를 수행하였다. 후처리 모형의 학습을 위한 입력자료로는 ECMWF의 S2S 과거예측(Hindcast) 정보를 이용하였으며 양분예보기법에 기반하여 학습된 다층퍼셉트론 모델을 이용한 후처리 결과와의 비교 분석이 수행되었다. 비교분석 결과 편차도(Bias score)는 평균 59.7% 감소하였고, 정확도(Accuracy)는 124.3% 증가하였으며, 임계성공지수(Critical Success Index)는 88.5% 향상된 것으로 분석되었다. 탐지확률(Probability of detection)의 경우 원자료 대비 평균 9.5% 감소하였으나 이는 ECMWF의 예측모델이 강수의 발생일을 과도하게 예측하였기 때문인 것으로 분석되었다. 본 연구 수행 결과 비록 ECMWF의 S2S 예측자료의 예측성이 낮더라도 후처리를 통해 예측성을 향상 시킬 수 있음을 확인하였으며, 본 연구 결과는 향후 수자원과 농업 분야에서 S2S 자료의 활용성을 높이는데 도움이 될 수 있을 것으로 판단된다.

전지구 계절 예측 시스템의 토양수분 초기화 방법 개선 (Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System)

  • 서은교;이명인;정지훈;강현석;원덕진
    • 대기
    • /
    • 제26권1호
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성 (The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2))

  • 이상민;현유경;신범철;지희숙;이조한;황승언;부경온
    • 대기
    • /
    • 제34권2호
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

북서태평양 아열대고기압 지수를 이용한 북동아시아 여름철 강수의 진단 (Diagnosis of Northeast Asian Summer Precipitation using the Western North Pacific Subtropical High Index)

  • 권민호
    • 한국지구과학회지
    • /
    • 제34권1호
    • /
    • pp.102-106
    • /
    • 2013
  • 동아시아 여름몬순의 강도와 북서태평양 여름몬순의 강도는 음의 상관을 갖는 것으로 알려져 왔다. 여기서 우리는 이 관계를 이용하여 북동아시아 여름철 강수의 잠재예측성을 조사하였다. 북서태평양 아열대 고기압은 북서태평양 여름몬순을 적절히 나타내며, 북서태평양-동아시아 지역 여름철 기후편차에 주된 성분이다. 그리고 북서태평양 아열대고기압 변동성을 이용한 북동아시아 여름철 강수 편차의 추정값은 북서태평양 여름몬순지수를 이용하는 것보다 더 낫다.