Abstract
A super ensemble model was developed for the seasonal prediction of regional precipitation in Korea using the lag correlated large scale predictors, based on the empirical orthogonal function (EOF) analysis and multiple linear regression model. The predictability of this model was also evaluated by cross-validation. Correlation between the predicted and the observed value obtained from the super ensemble model showed 0.73 in spring, 0.61 in summer, 0.69 in autumn and 0.75 in winter. The predictability of categorical forecasting was also evaluated based on the three classes such as above normal, near normal and below normal that are clearly defined in terms of a priori specified by threshold values. Categorical forecasting by the super ensemble model has a hit rate with a range from 0.42 to 0.74 in seasonal precipitation.
경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.