DOI QR코드

DOI QR Code

Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1

PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발

  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Su-Bong (Division of Earth Environmental System, Pusan National University) ;
  • Ryoo, Sang-Boom (Global Environment System Research Lab., National Institute of Meteorological Research)
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 이수봉 (부산대학교 지구환경시스템학부) ;
  • 류상범 (국립기상연구소 지구환경시스템연구과)
  • Received : 2012.10.06
  • Accepted : 2012.11.20
  • Published : 2012.12.31

Abstract

This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

Acknowledgement

Supported by : 국립기상연구소

References

  1. 안중배, 윤용훈, 조익현, 오혜람, 2005: VAF 변분법을 이용한 전구 해양자료 동화 연구. 한국해양학회지 바다, 10(1), 69-78.
  2. 안중배, 이해진, 2000: 중규모 해양모형을 이용한 한반도 주변해역 해양순환 재현. 한국해양학회지 바다, 5(3), 186-194.
  3. 안중배, 이진아 2001 : 해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구. 한국해양학회지 바다, 6(4), 225-233.
  4. 정혜인, 안중배, 2007: PNU/CME CGCM을 이용한 엘니뇨/라니냐 장기 예측성 연구. 한국해양학회지 바다, 12(3), 170-177.
  5. Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2007: The ECMWF System 3 Ocean Analysis System. ECMWF Technical Memorandum 408.
  6. Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3). J. Climate, 11, 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  7. Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 7603-7612. https://doi.org/10.1029/92JD00291
  8. Carval, T., 2002: Argo data management: User's manual. Ifremer, 6-7 pp.
  9. Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99, 5551-5568. https://doi.org/10.1029/93JD03478
  10. Holtslag, A. A. M. and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825-1842. https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
  11. Huang, X. Y., 2000: Variational Analysis Using Spatial Filters. Mon. Wea. Rev., 128(7), 2588-2600. https://doi.org/10.1175/1520-0493(2000)128<2588:VAUSF>2.0.CO;2
  12. Hunke, E. C. and J. K. Dukowicz, 1997: An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. J. Phys. Oceanogr., 27, 1849-1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  13. IPCC, 2007: Climate Change 2007: The Physical Science Basis . Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  14. Ji, M., A. Leetmaa, and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123, 460-481. https://doi.org/10.1175/1520-0493(1995)123<0460:AOASFS>2.0.CO;2
  15. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model(CCM3). NCAR Tech. Note. NCAR/TN-420+STR, 152 pp.
  16. Mogensen, K., M. A. Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech Memo 668.
  17. Pacanowski, R. C. and S. M. Griffies, 1998: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA 08542.
  18. Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379-389. https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
  19. Sun, J. Q. and J. B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv. Atmos. Sci., 28(5), 1049-1055. https://doi.org/10.1007/s00376-011-0122-8
  20. Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and M. Kamachi, 2006: Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results. Advances in Space Res., 37, 806-822. https://doi.org/10.1016/j.asr.2005.09.022
  21. Yin, Y., O. Alves, and P. R. Oke, 2011: An Ensemble Ocean Data Assimilation System for Seasonal Prediction. Mon. Wea. Rev., 139, 786-808. https://doi.org/10.1175/2010MWR3419.1
  22. Zhang, G. J. and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmosphere-Ocean., 33, 407-446. https://doi.org/10.1080/07055900.1995.9649539