• Title/Summary/Keyword: seasonal forecast

Search Result 175, Processing Time 0.028 seconds

Relationship Analysis of Power Consumption Pattern and Environmental Factor for a Consumer's Short-term Demand Forecast (전력소비자의 단기수요예측을 위한 전력소비패턴과 환경요인과의 관계 분석)

  • Ko, Jong-Min;Song, Jae-Ju;Kim, Young-Il;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1956-1963
    • /
    • 2010
  • Studies on the development of various energy management programs and real-time bidirectional information infrastructures have been actively conducted to promote the reduction of power demands and CO2 emissions effectively. In the conventional energy management programs, the demand response program that can transition or transfer the power use spontaneously for power prices and other signals has been largely used throughout the inside and outside of the country. For measuring the effect of such demand response program, it is necessary to exactly estimate short-term loads. In this study, the power consumption patterns in both individual and group consumers were analyzed to estimate the exact short-term loads, and the relationship between the actual power consumption and seasonal factors was also analyzed.

Design of Seasonal Nonlinear Time Series Algorithm for Improving Forecast Accuracy in IoT Environment (IoT 환경에서 예측 정확도 향상을 위한 계절성 비선형 시계열 알고리즘 설계)

  • Kang, Jung-Ku;Park, Seok-Cheon;Kim, Jong-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.645-648
    • /
    • 2015
  • ICT 시대를 맞아 하루가 다르게 새로운 기술이 등장하고 있으며, 최근에는 사물인터넷 시대까지 도래하였다. 하지만 현재 사물인터넷에서 폭발적으로 발생되는 시계열 데이터를 분석하는 연구는 미비한 상태이다. 따라서 본 논문에서는 사물인터넷에서 발생되는 시계열 데이터의 예측 정확도 향상을 위해 사계절이 뚜렷한 우리나라의 계절성 특성을 고려한 SARIMA알고리즘과 비선형 특성 예측 알고리즘인 SVM을 결합한 하이브리드 SARIMA-SVM알고리즘을 제안 한다.

Seasonal Heavy Rain Forecast Using SVMs (SVM을 이용한 계절별 호우 상황 예측 기법)

  • Lee, Jaedong;Lee, Sungwoo;Kim, Jaekwang;Lee, Jee-Hyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.324-326
    • /
    • 2012
  • 본 연구에서는 날씨를 나타내는 속성들의 값을 이용하여 현재로부터 6시간 후의 호우/비호우를 예측하기 위한 기법을 연구한다. 본 연구를 통해 호우/비호우 예측을 할 때 각 속성 값들이 호우, 비호우를 나타내는 일기도의 특정 패턴에 영향을 받는지 혹은 계절별로 영향을 받는지를 살펴보았다. 실험을 위하여 20년 누적 일기도를 SVM으로 학습하고 호우와 비호우 각각의 정답 집합을 이용하여 테스트 하였다. 실험 결과 SVM의 호우 예측도는 최대 70% 정도의 정확률을 보였으며 예측에 영향을 주는 것은 특정 패턴보다는 계절에 따른 변화임을 알아내었다.

ANALYSIS OF THE INFLUENCE OF WEATHER ON CONSTRUCTION PRODUCTIVITY RATE FOR SUPER-HIGHRISE BUILDING CONSTRUCTION FRAMEWORK

  • Jae-won Shin;Han-kook Ryu;Moon-seo Park;Hyun-soo Lee
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1124-1128
    • /
    • 2005
  • The duration of a construction project is not only a key element for taking a new order, but also a strict yardstick to determine certain project successful or not. However, since construction project is basically outdoor job and most of the activities are proceeded out-air, no matter how the schedule plan has been established accurately, actual project proceeds due to the weather condition, beyond anyone's control. In this paper, the functional relationship between work productivity rate and weather elements is suggested by regression analysis. Difference of the relationship and influence of weather due to the seasonal group are also revealed. With these results, by simulating actual weather data and generating weather forecast through historical data, more accurate schedule would be obtained.

  • PDF

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis (한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.

  • PDF

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.

Assessment of Seasonal Forecast Skill of Springtime Droughts over Northeast Asia in Climate Forecast Models (기후 예보 모델의 동북아시아 봄철 가뭄 예측성 연구)

  • Jonghun Kam;Byeong-Hee Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.42-42
    • /
    • 2023
  • 최근 IPCC 6차 보고서에서는 전 지구의 온도가 0.5℃가 증가할 때마다 기상학적 가뭄 지역이 증가하며, 인위적 강제력은 가뭄 현상의 강도와 빈도를 증가하는 것으로 밝혔다. 봄철(3월-5월) 동남아시아(남중국, 필리핀 등)에 비해 상대적으로 건조한 동북아시아(동중국, 한반도, 일본) 지역은 가뭄에 취약하며 기후 변화에 따라 가뭄으로 인한 피해가 커질 것으로 전망된다. 그러므로 이 지역은 봄철 가뭄으로 인한 피해를 완화하기 위해 봄철 강수량에 대한 신뢰할 만한 계절적 예보 기술이 꼭 필요하다. 본 연구에서는 1992-2022년 봄철의 Standardized Precipitation Index(SPI) 값을 기준으로 2001년과 2011년 동북아시아 가뭄이 발생한 것을 확인하였으며, 각 해의 3월에 관측된 기상학적 초기 조건으로부터 다중 기후 예보 모델들의 봄철 강수량의 계절적 예측성을 정량적으로 평가하였다. 관측자료로부터 2001년 가뭄은 동북아시아 대기 상층의 저기압성 순환의 강화로 인한 제트류(Jet stream)의 강화와 연관되어 있었으며, 2011년 가뭄은 제트류 강화와 함께 태평양 열대 지역 기류 강화가 동반되어 발생하였음을 알 수 있었다. North American Multi-Model Ensemble 기후 예보 모델들은 2011년 가뭄에 비해 2001년 가뭄에 대한 예측성이 높았으며, 그 이유로는 대기 상층 순환의 예측성과 연관이 있음을 밝혔다. 또한, 봄철 대기-해양 상호 패턴을 관측과 유사하게 재현한 GFDL-SPEARS 모델이 가뭄 해의 대기 상층 저기압성 순환과 강수 예측성이 가장 높은 것을 보였다. 본 연구의 결과들을 통해 동북아시아 봄철 가뭄과 같은 극한 기상의 강수량 예측성 향상에 있어서 기후 예보 모델들의 현실적인 대기-해양 결합 과정 모사 능력의 중요성을 밝혔다. 본 연구에서 제안된 방안들은 기후 예측 모델 개선을 위한 전략적인 정보를 제공할 것으로 보인다.

  • PDF

Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport (항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로)

  • Yoon, Sung Wook;Jeong, Suk Jae
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2014
  • This study deals with capacity expansion planning of airport infrastructure in view of economic validation that reflect construction costs and social benefits according to the reduction of passengers' delay time. We first forecast the airport peak-demand which has a seasonal and cyclical feature with ARIMA model that has been one of the most widely used linear models in time series forecasting. A discrete event simulation model is built for estimating actual delay time of passengers that consider the passenger's dynamic flow within airport infrastructure after arriving at the airport. With the trade-off relationship between cost and benefit, we determine an economic quantity of conveyor that will be expanded. Through the experiment performed with the case study of Incheon international airport, we demonstrate that our approach can be an effective method to solve the airport expansion problem with seasonal passenger arrival and dynamic operational aspects in airport infrastructure.

A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System (한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템)

  • Kim, Jung-Hoon;Chun, Hye-Yeong;Jang, Wook;Sharman, R.
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.