• 제목/요약/키워드: search similarity

검색결과 537건 처리시간 0.025초

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

시맨틱웹 기반 개인 맞춤형 도서 추천 시스템 (Personalized Book Recommendation System based on Semantic Web)

  • 김진천
    • 한국정보통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.1097-1104
    • /
    • 2011
  • 본 논문에서는 개인 맞춤 도서 추천을 위한 시맨틱웹 접근방법을 제안한다. 제안방법은 콘텐츠 기반 추천을 이용하면서도 사용자가 모든 도서 검색 시스템에 자신의 관심분야를 등록해야 하는 단점을 개선한다. 제안방법은 다양한 서지정보제공자의 도서분류 온톨로지상에서 자신의 관심분야를 등록할 수 있게 함으로써 사용자 프로파일을 공유한다. 또한 사용자 프로파일 관리 시스템은 제안방법에 의해 작성된 사용자 프로파일을 관리하고, 사용자의 관심분야와 도서분류 온톨로지상의 각 개념과의 유사성을 분석하는 기능을 제공한다. 제안방법은 사용자 프로파일의 공유를 통해 기존 키워드 검색에 비해 더 향상된 효율성을 제공한다.

이차원 퓨리에 변환의 크기와 위상을 이용한 커버곡 검색 (Cover song search based on magnitude and phase of the 2D Fourier transform)

  • 서진수
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.518-524
    • /
    • 2018
  • 라이브 음악 또는 리메이크를 통해서 재발매된 음악을 원곡의 커버곡이라 부른다. 본 논문은 고속 커버곡 검색을 위한 특징 축약을 위해 2차원 퓨리에 변환을 이용하는 방법을 연구하였다. 이차원 퓨리에 변환은 조변화에 대해서 불변성을 가지고 있으므로, 커버곡 검색을 위한 특징 축약 방법으로 적합하다. 기존 퓨리에 변환 방법에서는 크기값 만을 활용하였으나, 본 논문에서는 인접한 크로마 블록은 같은 조변화를 가진다는 가정하에 위상 정보를 추가로 활용하는 방법을 제안하였다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하였으며, 제안된 방법이 기존 방법에 비해서 우수한 커버곡 검색 정확도를 보임을 확인하였다.

Cloning and Phylogenetic Analysis of Two Different bphC Genes and bphD Gene From PCB-Degrading Bacterium, Pseudomonas sp. Strain SY5

  • Na, Kyung-Su;Kim, Seong-Jun;Kubo, Motoki;Chung, Seon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.668-676
    • /
    • 2001
  • Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.

  • PDF

번들상품추천시스템 개발을 위한 객체지향 사례베이스 설계와 유사도 측정에 관한 연구 (An Object-Oriented Case-Base Design and Similarity Measures for Bundle Products Recommendation Systems)

  • 정대율
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.23-51
    • /
    • 2003
  • 인터넷 쇼핑몰에서 사례기반추론기법을 통한 유사상품의 탐색과 사용자 요구에 적합한 상품추천을 위해서는 다양한 요구에 부응할 수 있는 사례베이스의 구축이 우선되어야 한다. 그리고 구축된 사례베이스로부터 유사한 사례를 검색하여 재 사용하거나 필요시 수정하고, 그 결과를 다시 저장하는 기능이 요구된다. 사례기반 상품추천시스템 개발에 있어 가장 중요한 요소는 사례의 표현문제이다. 본 연구에서는 인터넷 수산물 쇼핑몰의 상품추천시스템에서 번들상품 구성문제(집안 이벤트 시 필요한 수산물의 집합)를 표현하는데 적합한 사례표현기법을 개발하며, 유사사례를 추출하기 위한 유사도 척도의 개발에 연구의 첫 번째 주안점을 둔다. 본 논문에서는 번들상품추천을 위한 사례표현기법으로 객체모델링(OMT)기법을 사용하고 있다. 또한 다양한 사례 속성 유사도 측정방법을 적용하며, 유사도 측정에서 분류법(taxonomy)의 의미와 그 적용방법을 제시한다.

  • PDF

새로운 N-ary 관계 디자인 기반의 온톨로지 모델을 이용한 문장의미결정 (A Semantic Similarity Decision Using Ontology Model Base On New N-ary Relation Design)

  • 김수경;안기홍;최호진
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.43-66
    • /
    • 2008
  • 시맨틱 웹 기술의 제안과 더불어 다양한 분야에 온톨로지의 특징을 적용한 기술 개발 연구가 많이 진행되고 있다. 인간이 소유한 개념을 가장 적절하게 표현하기 위해 현재에도 OWL, RDF와 같은 온톨로지 언어의 표현력을 확장시키기 위해 N-ary 관계나 모델-이론 의미론과 같은 개발이 진행되고있다. 본 연구는 한국어에 있어 문장이 내포하는 의미를 정확하게 결정하기 위해 문장의 구조에 따라 달라지는 단어의 의미를 연관할 수 있도록 N-ary 관계와 디자인 기반이 적용된 온톨로지의 지식 표현 방법을 연구하였다. 특히 다양한 지식 영역을 포함하는 다의어(polysemy)와 동의어(synonym)의 특징을 갖는 단어에 있어 각 지식 영역으로 분류되어 각 지식 영역에 있는 유사한 의미를 가진 단어로 확장되어 유사한 의미를 가진 단어가 포함된 문장의 경우 까지도 확장할 수 있는 표현 방법을 연구하였다. 연구의 검증을 위해 사용자가 입력한 병증 문장을 제안된 방법에 따라 구축된 온톨로지내 지식 관계와 의미 결정을 위한 추론 표현 방법을 이용하여 병증의 의미를 결정하고 그에 따른 진단을 제공하는 실험 시스템을 구현하였고, 한국어가 갖고 있는 문장의 유의성, 모호성, 복합성 의 특징을 보유한 증상문들의 실험 결과 의미 결정과 유사 의미 확장에 있어 우수한 성능을 보여주었다.

소비자의 선택 과부하와 유사성 회피 성향이 온라인 추천 서비스의 혁신성과 사용 적합성 지각에 미치는 영향 (The Effect of Consumers' Choice Overload and Avoidance of Similarity on Innovativeness and Use Compatibility in Online Recommendation Service)

  • 윤남희;이하경;장세윤
    • 한국의류산업학회지
    • /
    • 제21권2호
    • /
    • pp.141-150
    • /
    • 2019
  • Online recommendation services help people search for an appropriate product among a huge assortment in stores that also minimize consumers' choice overload. People with a need for uniqueness are likely to prefer this online recommendation service based on individual needs and tastes. This study verifies the effect of consumers' choice overload and similarity avoidance in consumers' evaluation towards an online recommendation service with a focus on innovativeness and use comparability. Two-hundred consumers participated in this study and data were collected through an online survey firm. A mock retailer's webpage was created and showed six types of sneakers, which was presented as a result of product recommendation based on consumers' personal information. Data was analyzed using confirmatory factor analysis (CFA), analysis of variance (ANOVA), and regression analysis. The results show that people with a high similarity avoidance perceive an online recommendation service as an innovative and compatible service. They also perceive a high level of use compatibility for an online recommendation service, especially when it is difficult to choose a product under choice overload. Innovativeness and use compatibility of an online recommendation service increase behavioral intention. The results of this study can contribute to strategies to start online recommendation services from online retailers' websites that identify circumstances in which consumers can adopt innovative services in a positive manner.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.149-155
    • /
    • 2022
  • 인터넷 상의 전자 상거래 시스템의 인기는 나날이 높아지고 있는데, 추천 시스템은 이러한 시스템들의 핵심 기능으로서, 고객들이 선호할만한 상품을 추천함으로써 원하는 상품을 검색하기 위한 노력을 크게 경감시킨다. 협력 필터링 기법은 많은 상업용 시스템에서 성공적으로 구현되어온 추천 알고리즘이지만 메모리 기반의 구현 방식은 학계에서의 인기와 유용함에도 불구하고 참조 인접 이웃의 부정확성이 존재한다. 본 연구에서는 이러한 문제점을 해결하고자 사용자와 항목 각각의 인접 이웃을 통합하여 활용하고, 이들과의 과거 유사성 보다 최근의 유사성을 더욱 가중하여 추천 리스트 결정에 반영하는 새로운 시간 인지 협력 필터링 기법을 제안한다. 실험 평가를 통하여, 기존의 여러 방법들보다 제안 방법이 예측 정확도 측면에서 월등한 성능을 보임을 확인하였다.

확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템 (A CF-based Health Functional Recommender System using Extended User Similarity Measure)

  • 홍세인;정의주;김재경
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.1-17
    • /
    • 2023
  • 정보통신기술의 발전과 디지털 기기의 대중화로 인해, 온라인 시장의 규모가 커지고 있다. 그 결과 고객들은 상품을 선택하는데 많은 시간과 비용이 소요되는 정보 과부하(Information Overload) 문제에 직면하고 있다. 따라서 고객이 선호할만한 상품을 추천해 주는 추천 시스템은 필수적인 도구가 되었으며 협업 필터링(Collaborative Filtering) 기법은 가장 널리 쓰이는 추천 방법이다. 전통적인 추천 시스템은 평점과 같은 정량적인 데이터만을 사용하기 때문에 추천의 정확도는 높지 않다. 이와 같은 문제를 해결하기 위해 요즘에는 사용자 리뷰와 같은 정성적 데이터를 반영하는 연구가 활발히 진행되고 있다. 협업 필터링의 일반적인 절차는 사용자-상품 행렬 생성, 이웃 집단 탐색, 추천 목록 생성 3단계로 구성되며 코사인 같은 사용자 유사도를 사용하여 목표 고객의 이웃을 탐색하며, 추천 상품 목록을 생성한다. 본 연구에서는 이웃 집단 탐색 및 추천 목록 생성 단계에서 사용하는 사용자 간의 유사도를 기존의 사용자 평점을 이용한 유사도에 고객의 리뷰 데이터를 사용하는 확장된 사용자 유사도를 제시한다. 리뷰를 정량화 하기 위해 본 연구에서는 텍스트 마이닝을 활용한다. 즉, 리뷰 데이터에 TF-IDF, Word2Vec, 그리고 Doc2Vec 기법을 사용하여 두 사용자 간의 리뷰 유사도를 구한 후 사용자 평점을 사용한 유사도와 리뷰 유사도를 결합한 확장된 유사도를 생성하는 것이다. 이를 검증하기 위해 전자상거래 사이트인 Amazon의 'Health and Personal Care'의 사용자 평점과 리뷰 데이터를 사용하였다. 실험 결과, 사용자 간 유사도를 산출할 때 기존의 평점에 기반한 유사도만을 사용하는 것보다, 사용자 리뷰의 유사도를 추가로 반영한 확장된 유사도를 사용하면 추천의 정확도가 높아진다는 것을 확인했다. 또한, 여러 텍스트 마이닝 기법 중에서 TF-IDF 기법을 사용한 확장된 유사도를 이웃 집단 탐색 및 추천 목록 생성단계에서 사용할 때의 성능이 가장 좋게 나타났다.

콘텐츠 정보의 연관성을 고려한 Ajax기반의 깊이 검색 시스템 구현 (The implementation of the depth search system for relations of contents information based on Ajax)

  • 김운용;박석규
    • 한국항행학회논문지
    • /
    • 제12권5호
    • /
    • pp.516-523
    • /
    • 2008
  • 최근 웹은 집단지성을 근간으로 참여형 구조를 형성하고 이를 바탕으로 빠르게 성장하고 있다. 이 환경에서 사용자에 의해 생성된 콘텐츠는 정보의 주류를 형성하고 있으며 이들의 효율적인 검색기법이 요구된다. 현재 콘텐츠의 검색은 주로 키워드용 기반으로 운영 되고 있으며, 언어의 유사성과 관계를 고려한 시맨틱 웹(Semantic web)에 대한 연구나 웹2.0환경의 사용자 태그 활용에 대한 연구가 활발히 진행되고 있다. 일반적으로 참여형 구조의 웹 환경은 사용자에 의해 생성된 대량의 콘텐츠와 다양한 형태 및 분류 구조를 가진다. 그 결과 이들의 효율적인 분류와 검색 기법이 요구된다. 이에 본 논문에서는 콘텐츠 검색을 위한 태그들 간의 연관성을 고려한 깊이 검색 시스템을 제시한다. 이를 통해 불필요한 콘텐츠 검색을 줄이고 집단에 포함된 제시어 서비스를 통해 콘텐츠 검색의 효율성을 증가시킬 수 있을 것이다.

  • PDF