Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
본 논문에서는 개인 맞춤 도서 추천을 위한 시맨틱웹 접근방법을 제안한다. 제안방법은 콘텐츠 기반 추천을 이용하면서도 사용자가 모든 도서 검색 시스템에 자신의 관심분야를 등록해야 하는 단점을 개선한다. 제안방법은 다양한 서지정보제공자의 도서분류 온톨로지상에서 자신의 관심분야를 등록할 수 있게 함으로써 사용자 프로파일을 공유한다. 또한 사용자 프로파일 관리 시스템은 제안방법에 의해 작성된 사용자 프로파일을 관리하고, 사용자의 관심분야와 도서분류 온톨로지상의 각 개념과의 유사성을 분석하는 기능을 제공한다. 제안방법은 사용자 프로파일의 공유를 통해 기존 키워드 검색에 비해 더 향상된 효율성을 제공한다.
라이브 음악 또는 리메이크를 통해서 재발매된 음악을 원곡의 커버곡이라 부른다. 본 논문은 고속 커버곡 검색을 위한 특징 축약을 위해 2차원 퓨리에 변환을 이용하는 방법을 연구하였다. 이차원 퓨리에 변환은 조변화에 대해서 불변성을 가지고 있으므로, 커버곡 검색을 위한 특징 축약 방법으로 적합하다. 기존 퓨리에 변환 방법에서는 크기값 만을 활용하였으나, 본 논문에서는 인접한 크로마 블록은 같은 조변화를 가진다는 가정하에 위상 정보를 추가로 활용하는 방법을 제안하였다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하였으며, 제안된 방법이 기존 방법에 비해서 우수한 커버곡 검색 정확도를 보임을 확인하였다.
Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.
인터넷 쇼핑몰에서 사례기반추론기법을 통한 유사상품의 탐색과 사용자 요구에 적합한 상품추천을 위해서는 다양한 요구에 부응할 수 있는 사례베이스의 구축이 우선되어야 한다. 그리고 구축된 사례베이스로부터 유사한 사례를 검색하여 재 사용하거나 필요시 수정하고, 그 결과를 다시 저장하는 기능이 요구된다. 사례기반 상품추천시스템 개발에 있어 가장 중요한 요소는 사례의 표현문제이다. 본 연구에서는 인터넷 수산물 쇼핑몰의 상품추천시스템에서 번들상품 구성문제(집안 이벤트 시 필요한 수산물의 집합)를 표현하는데 적합한 사례표현기법을 개발하며, 유사사례를 추출하기 위한 유사도 척도의 개발에 연구의 첫 번째 주안점을 둔다. 본 논문에서는 번들상품추천을 위한 사례표현기법으로 객체모델링(OMT)기법을 사용하고 있다. 또한 다양한 사례 속성 유사도 측정방법을 적용하며, 유사도 측정에서 분류법(taxonomy)의 의미와 그 적용방법을 제시한다.
시맨틱 웹 기술의 제안과 더불어 다양한 분야에 온톨로지의 특징을 적용한 기술 개발 연구가 많이 진행되고 있다. 인간이 소유한 개념을 가장 적절하게 표현하기 위해 현재에도 OWL, RDF와 같은 온톨로지 언어의 표현력을 확장시키기 위해 N-ary 관계나 모델-이론 의미론과 같은 개발이 진행되고있다. 본 연구는 한국어에 있어 문장이 내포하는 의미를 정확하게 결정하기 위해 문장의 구조에 따라 달라지는 단어의 의미를 연관할 수 있도록 N-ary 관계와 디자인 기반이 적용된 온톨로지의 지식 표현 방법을 연구하였다. 특히 다양한 지식 영역을 포함하는 다의어(polysemy)와 동의어(synonym)의 특징을 갖는 단어에 있어 각 지식 영역으로 분류되어 각 지식 영역에 있는 유사한 의미를 가진 단어로 확장되어 유사한 의미를 가진 단어가 포함된 문장의 경우 까지도 확장할 수 있는 표현 방법을 연구하였다. 연구의 검증을 위해 사용자가 입력한 병증 문장을 제안된 방법에 따라 구축된 온톨로지내 지식 관계와 의미 결정을 위한 추론 표현 방법을 이용하여 병증의 의미를 결정하고 그에 따른 진단을 제공하는 실험 시스템을 구현하였고, 한국어가 갖고 있는 문장의 유의성, 모호성, 복합성 의 특징을 보유한 증상문들의 실험 결과 의미 결정과 유사 의미 확장에 있어 우수한 성능을 보여주었다.
Online recommendation services help people search for an appropriate product among a huge assortment in stores that also minimize consumers' choice overload. People with a need for uniqueness are likely to prefer this online recommendation service based on individual needs and tastes. This study verifies the effect of consumers' choice overload and similarity avoidance in consumers' evaluation towards an online recommendation service with a focus on innovativeness and use comparability. Two-hundred consumers participated in this study and data were collected through an online survey firm. A mock retailer's webpage was created and showed six types of sneakers, which was presented as a result of product recommendation based on consumers' personal information. Data was analyzed using confirmatory factor analysis (CFA), analysis of variance (ANOVA), and regression analysis. The results show that people with a high similarity avoidance perceive an online recommendation service as an innovative and compatible service. They also perceive a high level of use compatibility for an online recommendation service, especially when it is difficult to choose a product under choice overload. Innovativeness and use compatibility of an online recommendation service increase behavioral intention. The results of this study can contribute to strategies to start online recommendation services from online retailers' websites that identify circumstances in which consumers can adopt innovative services in a positive manner.
인터넷 상의 전자 상거래 시스템의 인기는 나날이 높아지고 있는데, 추천 시스템은 이러한 시스템들의 핵심 기능으로서, 고객들이 선호할만한 상품을 추천함으로써 원하는 상품을 검색하기 위한 노력을 크게 경감시킨다. 협력 필터링 기법은 많은 상업용 시스템에서 성공적으로 구현되어온 추천 알고리즘이지만 메모리 기반의 구현 방식은 학계에서의 인기와 유용함에도 불구하고 참조 인접 이웃의 부정확성이 존재한다. 본 연구에서는 이러한 문제점을 해결하고자 사용자와 항목 각각의 인접 이웃을 통합하여 활용하고, 이들과의 과거 유사성 보다 최근의 유사성을 더욱 가중하여 추천 리스트 결정에 반영하는 새로운 시간 인지 협력 필터링 기법을 제안한다. 실험 평가를 통하여, 기존의 여러 방법들보다 제안 방법이 예측 정확도 측면에서 월등한 성능을 보임을 확인하였다.
정보통신기술의 발전과 디지털 기기의 대중화로 인해, 온라인 시장의 규모가 커지고 있다. 그 결과 고객들은 상품을 선택하는데 많은 시간과 비용이 소요되는 정보 과부하(Information Overload) 문제에 직면하고 있다. 따라서 고객이 선호할만한 상품을 추천해 주는 추천 시스템은 필수적인 도구가 되었으며 협업 필터링(Collaborative Filtering) 기법은 가장 널리 쓰이는 추천 방법이다. 전통적인 추천 시스템은 평점과 같은 정량적인 데이터만을 사용하기 때문에 추천의 정확도는 높지 않다. 이와 같은 문제를 해결하기 위해 요즘에는 사용자 리뷰와 같은 정성적 데이터를 반영하는 연구가 활발히 진행되고 있다. 협업 필터링의 일반적인 절차는 사용자-상품 행렬 생성, 이웃 집단 탐색, 추천 목록 생성 3단계로 구성되며 코사인 같은 사용자 유사도를 사용하여 목표 고객의 이웃을 탐색하며, 추천 상품 목록을 생성한다. 본 연구에서는 이웃 집단 탐색 및 추천 목록 생성 단계에서 사용하는 사용자 간의 유사도를 기존의 사용자 평점을 이용한 유사도에 고객의 리뷰 데이터를 사용하는 확장된 사용자 유사도를 제시한다. 리뷰를 정량화 하기 위해 본 연구에서는 텍스트 마이닝을 활용한다. 즉, 리뷰 데이터에 TF-IDF, Word2Vec, 그리고 Doc2Vec 기법을 사용하여 두 사용자 간의 리뷰 유사도를 구한 후 사용자 평점을 사용한 유사도와 리뷰 유사도를 결합한 확장된 유사도를 생성하는 것이다. 이를 검증하기 위해 전자상거래 사이트인 Amazon의 'Health and Personal Care'의 사용자 평점과 리뷰 데이터를 사용하였다. 실험 결과, 사용자 간 유사도를 산출할 때 기존의 평점에 기반한 유사도만을 사용하는 것보다, 사용자 리뷰의 유사도를 추가로 반영한 확장된 유사도를 사용하면 추천의 정확도가 높아진다는 것을 확인했다. 또한, 여러 텍스트 마이닝 기법 중에서 TF-IDF 기법을 사용한 확장된 유사도를 이웃 집단 탐색 및 추천 목록 생성단계에서 사용할 때의 성능이 가장 좋게 나타났다.
최근 웹은 집단지성을 근간으로 참여형 구조를 형성하고 이를 바탕으로 빠르게 성장하고 있다. 이 환경에서 사용자에 의해 생성된 콘텐츠는 정보의 주류를 형성하고 있으며 이들의 효율적인 검색기법이 요구된다. 현재 콘텐츠의 검색은 주로 키워드용 기반으로 운영 되고 있으며, 언어의 유사성과 관계를 고려한 시맨틱 웹(Semantic web)에 대한 연구나 웹2.0환경의 사용자 태그 활용에 대한 연구가 활발히 진행되고 있다. 일반적으로 참여형 구조의 웹 환경은 사용자에 의해 생성된 대량의 콘텐츠와 다양한 형태 및 분류 구조를 가진다. 그 결과 이들의 효율적인 분류와 검색 기법이 요구된다. 이에 본 논문에서는 콘텐츠 검색을 위한 태그들 간의 연관성을 고려한 깊이 검색 시스템을 제시한다. 이를 통해 불필요한 콘텐츠 검색을 줄이고 집단에 포함된 제시어 서비스를 통해 콘텐츠 검색의 효율성을 증가시킬 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.