• Title/Summary/Keyword: sea-sand

Search Result 627, Processing Time 0.026 seconds

Features of Yellow Sand in SeaWiFS Data and Their Implication for Atmospheric Correction

  • Sohn, Byung-Ju;Hwang, Seok-Gyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.404-408
    • /
    • 1998
  • Yellow sand event has been studied using SeaWiFS data in order to examine the aerosol optical characteristics in the Yellow Sea and their influences on the atmospheric correction for the ocean color remote sensing. Two SeaWiFS images of April 18 and April 25, 1998, representing Yellow Sand event and clear-sky case respectively, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. SeaWiFS aerosol optical thickness is compared with nearby ground-based sun photometer measurements and also is compared with radiative transfer simulation in conjunction with yellow sand model, examining the performance of NASA's atmospheric correction algorithm in case of the heavy dust event.

  • PDF

Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds (잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 박세인;신현필;이환우;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

Influence of Fine Aggregate on the Bleeding of Concrete (잔골재가 콘크리트의 블리딩에 미치는 영향)

  • 황인성;배정렬;심보길;전충근;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.317-322
    • /
    • 2001
  • This paper investigates the influence of fine aggregates on bleeding of concrete. According to test results, as water content decreases, crushed sand content increases, fluidity shows decline tendency. As for aggregates kinds, concrete using sea sand shows most fluidity loss among the tested results. Compressive strength gains highly when crushed sand is used. As for bleeding of concrete, bleeding shows decline tendency because of increasing in powder content and filling effect of voids. Bleeding amount is in a decreasing order of magnitude for concretes made with the following aggregates: sea sand, river sand, and crushed sand. Accordingly, crushed sand mixed with river sand and sea sand with certain proportion enable to reduce bleeding and enhance strength.

  • PDF

Application of Concrete with Crushed Sand on Site (부순모래 콘크리트의 현장 적용성)

  • 이성복;이도헌;최진만;김병환;박창수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.147-152
    • /
    • 1998
  • This study is to investigate the application of concrete with crushed sand on site. As a result, it is showed that the combined sand mixed with sea sand is very desirable for obtaining workability and strength of concrete, and the optimal replacement percentage of crushed sand is 50% with sea sand. After all, the crushed sand could be sufficiently used as a fine aggregate for concrete in the aspect of economical efficiency and quality, but the particle shape and microsand passing No.200 sieve should be firstly improved for increasing workability of concrete on site.

  • PDF

Study on the Properties of Concrete Using Crushed Sand (부순모래를 사용한 콘크리트의 특성에 관한 연구)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Han, Chon-Goo;Yoon, Ki-Won;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.83-92
    • /
    • 2006
  • Recently, interest grew recently on the quality of aggregates following the diminution of primary resources from river and the growing construction demand which exhausted high-quality sand sources around large cities and incited the use of low grade aggregates like shore sand and sea sand that can be supplied in natural state. Especially, the environmental preservation concern and the augmentation of public grievance about the exploitation of sea sand as substitute to river sand are gradually impeding the supply. This situation aggravated by the recent interdiction to extract sea sand which resulted in sand crisis that even led once to the suspension of construction works. The lack of sea sand and river sand increased the exploitation of crushed sand which occupies now nearly 20% of the whole quantity of fine aggregates. And, the use of crushed sand may be expected to grow continuously in the future. This paper described that the properties of crushed sand and the concrete using the crushed sand, the technologies to improve quality of crushed sand and the concrete in order to provide information for the production of high-quality concrete using crushed sand.

  • PDF

Review of the Functional Properties and Spatial Distribution of Coastal Sand Dunes in South Korea (우리나라 해안사구 분포 현황과 기능특성에 관한 고찰)

  • Yoon, Han-Sam;Park, So-Young;Yoo, Chang-Ill
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.180-194
    • /
    • 2010
  • Coastal sand dunes are dynamic and fragile buffer zones of sand and vegetation where the following three characteristics can be found: large quantities of sand, persistent wind capable of moving sand, and suitable locations for sand to accumulate. The functional properties of coastal sand dunes include the roles in sand storage, underground freshwater storage, coastal defense, and ecological environment space, among others. Recently, however, the integrity of coastal dune systems has been threatened by development, including sand extraction for the construction industry, military usage, conversion to golf courses, the building of seawalls and breakwaters, and recreational facility development. In this paper, we examined the development mechanisms and structural/format types of coastal sand dunes, as well as their functions and value from the perspective of coastal engineering based on reviews of previous researches and a case study of a small coastal sand dune in the Nakdong river estuary. Existing data indicate that there are a total of 133 coastal sand dunes in South Korea, 43 distributed on the East Sea coast (32 in the Gangwon area, and 11 in Gyeongsangbuk-do), 60 on the West Sea coast (4 in Incheon and Gyeonggi-do, 42 in Ghungcheongnam-do, 9 in Jellabuk-do, and 5 in Jellanam-do), and 30 on the South Sea coast (16 in Jellanam-do, 2 in Gyeongsangnam-do, and 12 in Jeju).

Effect of Different Substrates in the Rearing Tank on Growth and Body Composition of Juvenile Sea cucumber Apostichopus japonicus (사육수조 내 사육기질이 어린 해삼의 성장 및 체조성에 미치는 영향)

  • Seo, Joo-Young;Kim, Dong-Gyu;Kim, Guen-Up;Cho, Sung-Su;Park, Heum-Gi;Lee, Sang-Min
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.118-121
    • /
    • 2009
  • This experiment was conducted to evaluate the effects of different substrates in rearing tank on growth and body composition of juvenile sea cucumber Apostichophus japonicus. Sea cucumber (average weight 3.6) were randomly distributed at a density of 10 juvenile per tank into nine tanks providing three different substrates including free-substrates, sand and wave-shaped plastic sheet as (shelter). Juveniles were fed with a commercial feed once in every 2 days for 8 weeks. At the end of the experiment, survival of sea cucumber was not affected by the presence of substrates (P>0.05). Weight gain and specific growth rate of sea cucumber reared in the tanks with sand were significantly higher than those of sea cucumber reared in the tanks with shelter and without substrate (P<0.05). Crude protein and crude lipid of whole body in sea cucumber reared in free-substrate tanks were significantly higher than those of juvenile reared in the tanks with other substrates (P<0.05). Higher ash content was obtained in sea cucumber reared in the tanks with sand compared to that of juvenile reared in the tanks with other substrates (P<0.05). The results of this study suggest that growth and proximate composition of whole body of sea cucumber was significantly affected by substrates. Among materials tested, sand may be a proper substrate for sea cucumber culture.

Bond Strength Properties of Antiwashout Underwater Concrete (수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구)

  • 김명식;김기동;윤재범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

An Experimental Study on the Durability of Concrete with a Source of Supply of Sand (잔골재의 원산지에 따른 콘크리트의 내구특성에 관한 실험적 연구)

  • Park, Jong-Ho;Hong, Ji-Hun;Kim, Jung-Bin;Park, Se-Jong;Park, Chang-Su;Lee, Sung-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.137-140
    • /
    • 2006
  • This study make an investigation into the quality of sand supplied with remicon manufacturing plant and examine concrete influenced by a source of supply of sand. As a result of the indoor test, the quality of crushed sand, EEZ sand and sand of north korea are worse than general sea sand. therefore, crushed sand, EEZ sand and sand of north sand lower quality of concrete.

  • PDF

An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete (해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구)

  • 남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF