• Title/Summary/Keyword: sea map

Search Result 268, Processing Time 0.028 seconds

Study on Distortion Compensation of Underwater Archaeological Images Acquired through a Fisheye Lens and Practical Suggestions for Underwater Photography - A Case of Taean Mado Shipwreck No. 1 and No. 2 -

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.312-321
    • /
    • 2021
  • Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180°) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models (ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현)

  • Choi, Heung-Bae;Um, Ho-Sik;Park, Jong-Jib;Kang, Taeuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.881-891
    • /
    • 2020
  • In recent years, large-scale development of coastal areas has caused the loss of many lives and extensive property damage in coastal areas, due to wave overtopping caused by high-wave invasion and strong typhoons. However, coastal inundation studies considering the characteristics of domestic coastal areas are insufficient. This study is a methodology study that aimed to reproduce inundation of surge and wave complex elements by applying the ADCSWAN (ADCIRC+SWAN) and FLOW-3D models. In this study, the boundary data (sea level, wave) of the FLOW-3D model was extracted using the ADCSWAN (ADCIRC+SWAN) model and applied as the input value of the FLOW-3D model and a reproduction was created of the Flooding due to surge and overtopping in Busan Marine City when the typhoon Chaba passed. In addition, the existing overtopping empirical equation and the overtopping calculated by the FLOW-3D model were compared, and for coastal inundation, a qualitative verification was performed using the Inundation Trace Map of Land and Geospatial Informatrix Corporation, and the effectiveness of this study was reviewed.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.

Time-lapse Geophysical Monitoring of $CO_2$ Sequestration (시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Nam, Myung-Jin;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.

Actual Vegetation and Plant Community Structure of Tohamsan (Mt.) Wetland Area of the Surroundings in Gyeongju National Park, Korea (경주국립공원 토함산습지 주변 지역의 현존식생과 식물군락구조)

  • Lee, Sang-Cheol;Kang, Hyun-Mi;Choi, Song-Hyun;Hong, Suk-Hwan;Lee, Soo-Dong;Cho, Woo;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.33-44
    • /
    • 2014
  • The purpose of this study was to provide basic information and investigate a vegetation structure around Tohamsan (Mt.) Wetland. Actual vegetation map was made on the basis of watershed around that. Vegetation structure survey was carried out for 8 representative communities of actual vegetation which were Pinus densifrora community, Quercus variabilis community, Cornus controversa community, Q. serrata community, Q. mongolica-Q. serrata community, Salix koreensis community, Q. mongolica community, Q. variabilis-Q. mongolica-Q. serrata community. Tohamsan (Mt.) Wetland is located on 490m above sea level and the area of watershed was $236,272m^2$. Vegetation type were divided into 16 types, and the ratio of Q. mongolica community was 33.1% ($78,209.2m^2$). In order to turn out the structure of 8 representative communties, 32 plots were set up and unit area of plot was $100m^2$. The estimated age of forest is 30~50-years-old, and in the resutls of soil analysis, acidity was pH 4.89 and organic matter was 4.46%.

Application of Fractal Dimension on Consistent Calculation of Coastline Length - Focused on Jeju Island (일관된 해안선 길이 산출을 위한 프랙탈 차원 적용 방안 연구 - 제주도를 중심으로 -)

  • Woo, Hee Sook;Kwon, Kwang Seok;Kim, Byung Guk;Cho, Seck Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.83-88
    • /
    • 2016
  • The use of consistent coastlines is an important element for the systematic management of maritime boundaries and the interests of local governments. The Hydrographic and Oceanographic Agency conducted a preliminary survey for consistent coastline production, since 2001. As a result, the length of coastline was different by year. Because of the lack of systematic management, the use of incorrect data, etc. We also changed the coastline on the sea chart to show on a digital map for realization of terrain expression method. However, there was a variation in shoreline length due to various surveying techniques and shoreline extraction methods. In this paper, the characteristics of Jeju-do coastline were analysed by using a modified divider method of fractal dimension. The accuracy of the vectorization was determined by converting the actual distance in the Public Survey Amendment for proper divider use. With 1:5,000 and 1:25,000 digital maps of Jeju-si and Seogwipo-si each fractal dimensions were calculated. Jeju-si=1.14 and Seogwipo-si=1.12 in 1: 5,000. Jeju-si=1.13 and Seogwipo-si=1.10 in 1: 25,000. Calculated fractal dimension were correlated to data from digital maps. It was considered that complexity and scale of coastlines affected. In the future coastline length statistics and minimum ratio of calculated coastline length to original length need to be determined for consistency of coastline length statistics.