• Title/Summary/Keyword: screen thickness

Search Result 237, Processing Time 0.027 seconds

Local Back Contact Formed by Screen Printing and Atomic Layer Deposited Al2O3 for Silicon Solar Cell

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.687-687
    • /
    • 2013
  • In rearpoint contact solar cell and the PERC (passivated emitter rear contact) type cell, surfaces were passivated by SiO2 or Al2O3 to increase solar cell efficiency. Therefore, we have investigated the effect of surface passivation for crystalline silicon solarcell using mass-production atomic layer deposited (ALD) Al2O3. The patttern which consists of cylinders with 100um diameter and 5um height was formed by PR patterning on Si (100) substrate and then Al2O3 of about 10nm and 20nm thickness was deposited by ALD. The pattern in 10 nm Al2O3 film was removed by dipping in aceton solution for about 10 min but the pattern in 20 nm Al2O3 film was not. The influences of process temperature and heat treatment were investigated using microwave photoconductance decay (PCD) and Quasi-Steady-State photoconductance (QSSPC). The solar cell process used in this work combines the advantage of using the applicability of a selective deposition associated with a ALD passivation and the use of low-cost screen print for the contacts formation.

  • PDF

The Altering Ratio of the luminance of a Inorganic Powder EL Lamp That was made by Screen Printing Technique (스크린 인쇄 기법에 의해 제작된 분산형 무기 EL 램프의 휘도 변화율)

  • Kang, Young-Reep;Moon, Kil-Hwan
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.33-44
    • /
    • 2011
  • The inorganic powder EL lamp was made by screen printing technique with a phosphor ink and a dielectric ink. The thickness of a phosphor ink layer and a dielectric ink layer is $35{\mu}m$ and $54{\mu}m$ respectively. A increasing ratio of the luminance of inorganic powder EL lamp to be a 1P1PD-phosphor ink layer in which increased voltage at constant frequency is higher 12% than when increased frequency at constant voltage. It is higher 57% than when increased frequency at constant voltage that the rate of increase of the luminance of inorganic powder EL lamp to be a 2PD-phosphor ink layer in which increased voltage at constant frequency. Finally, when increased voltage at constant frequency, a increasing ratio of the luminance of inorganic powder EL lamp to be a 2PD-phosphor ink layer is higher about 40% than that to be a 1P1PD-phosphor ink layer.

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

Structural and dielectric properties of the BSCT thick films fabricated by the screen printing method (스크린 프린팅법으로 제작한 BSCT 후막의 구조적 특성과 유전적 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Lee, Chang-Gong;Nam, Sung-Pill;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.167-167
    • /
    • 2008
  • The barium strontium calcium titanate powders were prepared by sol-gel method. Ferroelectric $(Ba_{0.54}Sr_{0.36}Ca_{0.1})TiO_3$(BSCT) thick films were fabricated by the screen-printing method on alumina substrate. And we investigated the structural and dielectric properties of BSCT thick films with the variation of sintering temperature. As a result of thermal analysis, BSCT polycrystalline perovskite phase was formed at around $660^{\circ}C$. The results of X-ray diffraction analysis were showed a cubic perovskite structure without presence of the second phase in all BSCT thick films. The average grain size and the thickness of the specimen sintered at $1450^{\circ}C$ were about 1.6 mm and 45 mm, respectively. The relative dielectric constant increased and the dielectric loss decreased with increasing the sintering temperature, the values of the BSCT thick films sintered at $1450^{\circ}C$ were 5641 and 0.4% at 1kHz, respectively.

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphor Thick Films Prepared by Screen Printing Method (스크린 프린팅법을 이용한 ZnGa2O4 형광체 후막의 발광특성)

  • Lee Seung-Kyu;Park Yong-Seo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.749-753
    • /
    • 2006
  • The $ZnGa_2O_4$ phosphor thick films were fabricated using a screen printing method on Si(100) substrates at various sintering temperatures. The XRD patterns show that the $ZnGa_2O_4$ thick films have a (311) main peak and a spinel structure with increasing sintering temperatures. The particle sizes of $ZnGa_2O_4$ phosphor were about 100 nm and the thickness of $ZnGa_2O_4$ thick film was $10{\mu}m$. The CL and PL properties of $ZnGa_2O_4$ showed main peak of 420nm and maximum intensity at the sintering temperature of $900^{\circ}C$. These results indicate that $ZnGa_2O_4$ phosphor thick films hold promise for displays such as plasma display panel and field emission display.

Structural and Electrical Properties of Pb(Zr0.4Ti0.6O3/PbZr0.6Ti0.4)O3 Heterolayered Thick Films

  • Park, Sang-Man;Lee, Sung-Gap;Yun, Sang-Eun;Noh, Hyun-Ji;Lee, Young-Hie;Bae, Seon-Gi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.279-282
    • /
    • 2006
  • [ $Pb(Zr_{0.4}Ti_{0.6}O_{3}\;and\;Pb(Zr_{0.6}Ti_{0.4})O_{3}$ ] paste were made and alternately screen-printed on the $Al_{2}O_{3}$ substrates. We have introduced a press-treatment to obtain a good densification of screen printed films. The porosity of the thick films was decreased with increasing the applied pressure and the thick films pressed at 60 MPa showed the dense microstructure and thickness of about $76\;{\mu}m$. The remanent polarization and coercive field increased with increasing applied pressure and the values for the PZT thick films pressed at 60 MPa were $17.04{\mu}C/cm^{2}$ and 78.09 kV/cm, respectively.

Dielectric Properties of PZT(20/80)/PZT(80/20) Heterolayered Thick Films Fabricated by Screen-printing Method

  • Lee, Sung-Gap;Lee, Young-Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 2006
  • Ferroelectric PZT heterolayered thick films were fabricated by the alkoxide-based sol-gel method. PZT(20/80) and PZT(80/20) paste were made and alternately screen-printed on the alumina substrates. The coating and drying procedure was repeated 4 times to form the heterolayered thick films. The thickness of the PZT heterolayered thick films was approximately $60{\mu}m$. All PZT thick films showed the typical XRD patterns of a polycrystalline rhombohedral structure. And in the PZT thick films sintered at $1100^{\circ}C$, the pyrochlore phase was observed due to the evaporation of PbO. The relative dielectric constant and the dielectric loss of the PZT thick films sintered at $1050^{\circ}C$ were 445.2 and 1.90 % at 1 kHz, respectively. The remanent polarization and coercive field of the PZT thick films sintered at $1050^{\circ}C$ were $14.15{\mu}C/cm^2$ and 19.13 kV/cm, respectively.

Electrical Properties of BaTiO3 Thick Films Fabricated by Screen-printing Method

  • Ahn, Byeong-Lib;Lee, Sung-Gap
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.149-152
    • /
    • 2007
  • [ $(Ba_{0.6}Sr_{0.3}Ca_{0.1})TiO_3$ ](BSCT) thick films doped with 0.1 mol% $MnCO_3\;and\;Yb_2O_3(0.1{\sim}0.7mol%)$ were fabricated by the screen printing method on the alumina substrates. And the structural and electrical properties as a function of $Yb_2O_3$ amount were investigated. The exothermic peak was observed at around $680^{\circ}C$ due to the formation of the poly crystalline perovskite phase. The lattice constants of the BSCT thick film doped with 0.7 mol% is 0.3994 nm. The specimen doped with 0.7 mol% $Yb_2O_3$ showed dense and uniform grains with diameters of about $4.2{\mu}m$. The average thickness of all BSCT thick films was approximately $70{\mu}m$. Relative dielectric constant and dielectric loss of the specimen doped with 0.7 mol% $Yb_2O_3$ were 2823 and 3.4%, respectively. The Curie temperature of the BSCT thick films doped with 0.1 mol% $Yb_2O_3$ was $46^{\circ}C$.

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film

  • Cha, Jae-Hyeok;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.

Development of Micro-Ceramic Heater for Medical Application (의료용 소형 세라믹스 히터 소자의 개발)

  • Lee, Seung-Min;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.219-229
    • /
    • 2022
  • In this study, we propose a miniaturized micro-ceramic heater device. After screen-printing a silver paste between pre-sintered two aluminum oxide plates to integrate a heating circuit, the device was fabricated through a low-temperature sintering process. In order to configure the optimal heating circuit integration condition, the output current evaluation and heating test were performed according to the number of screen prints of the silver paste at various voltages. A silver paste-based heating circuit printed with a line width of 200 ㎛ and a thickness of 60 ㎛ was successfully integrated on a pre-sintered alumina substrate through a low-temperature sintering process. In the case of the 5 times printed device, the thermal response showed a response rate of 18.19 ℃/sec. To demonstrate feasibility of the proposed device in the medical field, such as bio-tissue suturing and hemostasis, a voltage was applied to pig tissue in the device to test tissue change due to heat generated from the device. These results show the possibility that the proposed small ceramic heater could be used in the medical field based on its excellent temperature response.