• Title/Summary/Keyword: screen printed

Search Result 331, Processing Time 0.032 seconds

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성)

  • Hong, Ji-Hwa;Kang, Min Gu;Kim, Nam-Soo;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.

Contact Resistance Analysis of High-Sheet-Resistance-Emitter Silicon Solar Cells (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1485-1490
    • /
    • 2012
  • An electrochemical immunoassay based on osmium-hippuric acid (HA) conjugate films onto the electrode is presented for the detection of urinary HA. This is the first report on the use of the oxidative electropolymerization of 5-amino-1,10-phenanthroline (5-$NH_2$-phen) for immobilizing an antigen, osmium-conjugated HA. As a redox mediator, [Os(5-amino-1,10-phenanthroline)$_2$(4-aminomethylpyridine-HA)Cl]$^{+/2+}$ (Os-phen-HA) was successfully synthesized and electropolymerized onto the screen-printed carbon electrodes (SPCEs). The interaction between osmium-HA conjugate films and antibody-HA ($anti$-HA) was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrical signals were linearly proportional to urinary HA in the range of 0.1-5.0 mg/mL, which is sufficient for use as an immunosensor using a cutoff concentration of 2.0 mg/mL in urine samples. The proposed electrochemical immunoassay method can be extended to various applications for detecting a wide range of different small antigens in the health care area.

CONTACT RESISTANCE ANALYSIS OF HIGH-SHEET-RESISTANCE-EMITTER SILICON SOLAR CELLS (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.390-393
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Improved Electrical and Optical Properties of ITO Films by Using Electron Beam Irradiated Sputter

  • Wie, Sung Min;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.407-408
    • /
    • 2013
  • Thin transparent conductive oxides (TCOs) having a thickness lower than 30 nm have been widely usedin touch screen panels. However the resistivity of the TCO films significantly increases as the thickness decreases, due to the poor crystallinity at very thin thickness of TCO films. In this study, we have investigated the effect of electron beam irradiation during the sputtering on the electrical properties and transmittance of 30 nm-thick ITO films, which have a different SnO2 atomic percent, prepared by magnetron sputtering at room temperature. Fig. 1 shows the variation of resistivity of ITO films with a different SnO2 atomic percent for both the normal ITO films and electron beam irradiated ITO films. As shows in Fig. 1, the electron beam irradiation to the ITO (SnO2 weight percent 10%) films during the sputtering resulted in a significantly decreased in resistivity from $7.4{\times}10^{-4}{\Omega}-cm$ to $1.5{\times}10^{-4}{\Omega}-cm$ and it also increased in transmittance from 84% to 88% at a wavelength of 550 nm. These results can be attributed to energy transfer from electron to ad-atoms of ITO films during the electron beam irradiated sputtering, which can enhance the crystallinity of 30 nm-thick ITO films. It is strongly indicate that electron beam irradiation can greatly improve the electrical properties and transmittance of very thin ITO films for touch screen panels, flexible displays and solar cells.

  • PDF

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak;Lee, Seonhwa;Nam, Hakhyun;Shin, Jae Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.310-317
    • /
    • 2020
  • A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.

Effects of $TiO_2$ electrode paste components on conversion efficiency of dye-sensitized solar cells ($TiO_2$ 광전극 paste의 구성 물질 함유량에 따른 염료감응 태양전지의 효율변화)

  • Ryu, Kyoung-Jin;Song, Sang-Woo;Lee, Kyung-Ju;Kim, Ji-Hong;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.226-226
    • /
    • 2010
  • The effects of paste components on the properties of porous $TiO_2$ film electrodes prepared through screen-printing technique were investigated in order to efficiently control and optimize the main fabrication step of the dye-sensitized solar cells (DSC). The screen-printed porous $TiO_2$ films were characterized by ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM), and applied as a part of the DSC for the energy conversion. The fabricated DSC were evaluated by a solar simulator. The experimental results indicate that the microstructural characteristics of the printed films and the performances of the DSC are dependent on the paste compositions. As a result that the efficiency of DSC prepared by manufactured paste was 0.5%~1% higher than existing paste.

  • PDF