DOI QR코드

DOI QR Code

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak (Department of Chemistry, Kwangwoon University) ;
  • Lee, Seonhwa (Department of Chemistry, Kwangwoon University) ;
  • Nam, Hakhyun (Department of Chemistry, Kwangwoon University) ;
  • Shin, Jae Ho (Department of Chemistry, Kwangwoon University)
  • Received : 2019.07.15
  • Accepted : 2020.04.02
  • Published : 2020.08.31

Abstract

A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.

Keywords

References

  1. F. Charmantray, N. Touisni, L. Hecquet, C. Mousty, Electroanalysis, 2013, 25(3), 630-635. https://doi.org/10.1002/elan.201200274
  2. S. I. Brahim, D. Maharajh, D. Narinesingh, A. G.-Elie, Anal. Lett., 2002, 35(5), 797-812. https://doi.org/10.1081/AL-120004070
  3. K. S. Park, S. S. Cho, D. Quan, J. S. Lee, G. S. Cha, H. Nam, Anal. Sci. Technol., 2007, 20(5), 393-399.
  4. K. Khun, Z. H. Ibupoto, O. Nur, M. Willander, J. Sens, 2012, 2012, 1-7.
  5. P. Kanyong, R. M. Pemberton, S. K. Jackson, J. P. Hart, Anal. Biochem., 2013, 435(2), 114-119. https://doi.org/10.1016/j.ab.2013.01.006
  6. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, A. Kumar, Electrochim. Acta., 2004, 49(15), 2479-2485. https://doi.org/10.1016/j.electacta.2004.01.024
  7. S. K. Sharma, S. K. Singh, N. Sehgal, A. Kumar, Food Chem., 2004, 88(2), 299-303. https://doi.org/10.1016/j.foodchem.2004.03.052
  8. J. Li, Z. Bai, Y. Mao, Q. Sun, X. Ning, J. Zheng, Electroanalysis, 2017, 29(10), 2307-2315. https://doi.org/10.1002/elan.201700295
  9. J. M. Henderson, F. W. Fales, Clin. Chem., 1980, 26(2), 282-285. https://doi.org/10.1093/clinchem/26.2.282
  10. G. A. Mason, G. K. Summer, H. H. Dutton, R. C. Schwaner, Clin. Chem., 1977, 23(6), 971-974. https://doi.org/10.1093/clinchem/23.6.971
  11. M. Fortelius, P. Mattjus, Chem. Phys. Lipids, 2006, 142, 103-110. https://doi.org/10.1016/j.chemphyslip.2006.03.007
  12. A. Fujimoto, Y. Okano, T. Miyagi, G. Isshiki, T. Oura, Clini. Chem., 2000, 46(6), 806-810. https://doi.org/10.1093/clinchem/46.6.806
  13. C. J. M. Stroop, C. A. Bush, R. L. Marple, W. R. LaCourse, Anal. Biochem., 2002, 303(2), 176-185. https://doi.org/10.1006/abio.2002.5582
  14. P. Schadewaldt, H.-W. Hammen, K. Loganathan, A. Bodner, U. Wendel, Clin. Che., 2000, 46(5), 612-619. https://doi.org/10.1093/clinchem/46.5.612
  15. H. Gulce, I. Ataman, A. Gulce, A. Yildiz, Enzyme Microb. Technol., 2002, 30(1), 41-44. https://doi.org/10.1016/S0141-0229(01)00452-5
  16. J. Arora, S. Nandwani, M. Bhambi, C. S. Pundir, Anal. Chim. Acta., 2009, 647(2), 195-201. https://doi.org/10.1016/j.aca.2009.06.001
  17. A. Chaubey, B. D. Malhotra, Biosens. Bioelectron., 2002, 17(6-7), 441-456. https://doi.org/10.1016/S0956-5663(01)00313-X
  18. S. Ferri, K. Kojima, K. Sode, J. Diabetes Sci. Technol., 2011, 5, 1068-1076. https://doi.org/10.1177/193229681100500507
  19. E. Ekinci, A. Pasahan, Eur. Polym. J., 2004, 40(8), 1605-1608. https://doi.org/10.1016/j.eurpolymj.2004.04.020
  20. G. Cui, S. J. Kim, S. H. Choi, H. Nam, G. S. Cha, Anal. Chem., 2000, 72(8), 1925-1929. https://doi.org/10.1021/ac991213d
  21. M. A. T. Gilmartin, J. P. Hart, Analyst, 1995, 120(4), 1029-1045. https://doi.org/10.1039/an9952001029
  22. A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Anal. Chem., 1984, 56(4), 667-671. https://doi.org/10.1021/ac00268a018
  23. J. H. T. Luong, C. Masson, R. S. Brown, K. B. Male, A. L. Nguyen, Biosens. Bioelectron., 1994, 9(8), 577-584. https://doi.org/10.1016/0956-5663(94)80050-2
  24. J. P. Hart, S. A. Wring, Trends Anal. Chem., 1997, 16(2), 89-103. https://doi.org/10.1016/S0165-9936(96)00097-0
  25. G. Cui, J. H. Yoo, B. W. Woo, S. S. Kim, G. S. Cha, H. Nam, Talanta, 2001, 54(6), 1105-1111. https://doi.org/10.1016/S0039-9140(01)00377-0
  26. B. Dalkiran, P. E. Erden, E. Kilic, Anal. Bioanal. Chem., 2016, 408(16), 4329-4339. https://doi.org/10.1007/s00216-016-9532-x
  27. P. Kanyong, G. Hughes, R. M. Pemberton, S. K. Jackson, J. P. Hart, Anal. Lett., 2016, 49(2), 236-244. https://doi.org/10.1080/00032719.2015.1070166
  28. J. D. Newman, A. P. F. Turner, Biosens. Bioelectron., 2005, 20(12), 2435-2453. https://doi.org/10.1016/j.bios.2004.11.012
  29. P. J. Taylor, E. Kmetec, J. M. Johnson, Anal. Chem., 1977, 49(6), 789-794. https://doi.org/10.1021/ac50014a030
  30. P. Manowitz, P. W. Stoecker, A. M. Yacyntch, Biosens. Bioelectron., 1995, 10(3-4), 359-370. https://doi.org/10.1016/0956-5663(95)96854-R
  31. G. Cui, J. H. Yoo, J. Yoo, S. W. Lee, H. Nam, G. S. Cha, Electroanalysis, 2001, 13(3), 224-228. https://doi.org/10.1002/1521-4109(200103)13:3<224::AID-ELAN224>3.0.CO;2-N
  32. T. Yao, K. Takashima, Biosens. Bioelectron, 1998, 13(1), 67-73. https://doi.org/10.1016/S0956-5663(97)00076-6
  33. F. A. Vega, C. G. Nunez, B. Weigel, B. Hitzmann, J. C. D. Ricci, Anal. Chim. Acta., 1998, 373(1), 57-62. https://doi.org/10.1016/S0003-2670(98)00389-4
  34. J. Njagi, S. Andreescu, Biosens. Bioelectron, 2007, 23(2), 168-175. https://doi.org/10.1016/j.bios.2007.03.028
  35. B. Olsson, H. Lundback, G. Johansson, Anal. Chim. Acta., 1985, 167, 123-136. https://doi.org/10.1016/S0003-2670(00)84415-3