• Title/Summary/Keyword: scour hole

Search Result 29, Processing Time 0.021 seconds

Experimental Study on the Characteristics of Local Scour Hole Downstream of V-shaped Drop Structure Model (V자형 낙차공 모형 직하류 국부세굴공 발생특성에 관한 실험적 연구)

  • Eom, Junghyun;Han, Hyeongjun;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.8-14
    • /
    • 2019
  • A drop structure, one of the representative river-crossing structures, is constructed to stabilize a riverbed. On the other hand, the structure interrupts the continuity of the river and causes the destruction of the hydro-ecological environment. Therefore, laboratory experiments of a natural type of drop structure with low differences were performed, and the empirical formula of a local scour hole is proposed. Four experimental flow rates were tested for various types of the drop structure models with 28 test cases. Based on the scour test, it was confirmed that the maximum scour depth occurs rather than the result of applying the previously proposed scour depth formulae. Correlation analysis of the major factors of scour hole at the downstream of the drop structure revealed a strong correlation between the upstream flow characteristics, drop structure height, and total crossing length of the drop model. In addition, the depth and length estimation formula of the maximum scour hole were proposed using the dimensionless variables and validated. In the future, it is also expected that more accurate scour prediction and calculation can be derived by conducting experimental studies and numerical analysis considering the various bed materials and flow conditions.

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool

  • Son, Kwang-Ik
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.1-11
    • /
    • 1995
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threaten the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new sour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variable, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on movable bed made of large spherical particles.

  • PDF

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

Estimation of Scour Depth at the Seadike Closure Gap (방조제 물막이구간의 세굴심도 추정)

  • 나정우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • The phenomena of local scour due to a current from a seadike closure gap which is protected by rock, then on to an erodible bed, have been studied. Based on the data of hydraulic model test, the scour characteristics have been investigated for the variation of maximum scour depth with time until reaching equilibrium stage and the shape of ultimate scour hole. A brief evaluation of DHL formula for the relationship between maximum scouring depth and time and a dimensionless form leading to time-scale introduced. On the basis of DHL formula, modified DHL formula denoted DHL-RDC formula is extend to the range of estimation of scour depth compared to DHL formula verified by model test.

  • PDF

Predicting Scour at Bridge Piers

  • Briaud, Jean-Louis
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.3-46
    • /
    • 1999
  • A new method called SRICOS is proposed to predict the scour depth z versus time t around a cylindrical bridge pier of diameter D founded in clay. The steps involved are ; 1. taking samples at the bridge pier site, 2. testing them in an Erosion Function Apparatus called the EFA to obtain the scour rate z versus the hydraulic shear stress applied $\tau$, 3. predicting the maximum shear stress r max which will be induced around the pier by the water flowing at ν Ο before the scour hole starts to develop, 4. using the measured z versus r curve to obtain the initial scour rate zi corresponding to r max , 5. predicting the maximum depth of scour zmax for the pier, 6. using zi and zmarx to develop the hyperbolic function describing the scour depth z versus time t curve, and 7. reading the z vs. t curve at a time corresponding to the duration of the flood to find the scour depth which will develop around the pier. A new apparatus is developed to measure the z vs t curve of step 2, a series of advanced numerical simulations are performed to develop an equation for the $\tau$ max value of step 3, and a series of flume tests are performed to develop an equation for the zmax value of step 5. The method is evaluated by comparing predictions and measurements in 42 flume experiments.

  • PDF

Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method (CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석)

  • Song, Seongjin;Jeon, Wooyoung;Park, Sunho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

TIME EVOLUTION OF SCOUR AROUND BRIDGE ABUTMENTS

  • Francesco Ballio;Enrico Orsi
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.243-259
    • /
    • 2001
  • Local phenomena around bridge piers and abutments are generally considered to be similar, nevertheless the presence of the incoming boundary layer on the side wall in the abutment case generates extra pressure gradients and consequently a more complex vortex pattern. In the literature, experimental data for bridge abutments are relatively scarce; in particular almost no data are available for the time evolution of the scour. In this work we present the results of several long duration (3 days longrightarrow5weeks) clear water scour laboratory tests around bridge abutments; the time evolution of the erosion process is analysed with respect to local and global characteristic values (maxima, volume, hole shape). In particular we analyse the effect of the constriction ratio b/B between the transversal obstacle dimension and the flume width: in many practical situations abutments (or piers) obstruct a significant portion of the channel, so that the average acceleration due to constriction is expected to increase the scour effects of the local acceleration around the obstacle. Measured values for maximum scour are poorly predicted by literature formulas. Scour depths are positively correlated with the constriction ratio, but increases are smaller than expected from literature indications. Experimental results show that models for bridge piers cannot be directly applied to abutments; in particular, time scales for the latter are significantly larger than for piers.

  • PDF

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

An Experimental Study on Reduction Effect of Scour Depth arounding Uniform Cylindrical Pier with Various Size of Circular Collar (원환 크기의 변화에 따른 균등원통교각 주위의 세굴심 감소효과에 관한 실험적 연구)

  • Sim, Ou-Bae;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.139-145
    • /
    • 2003
  • This study is to propose reduction effect of scour depth and a optimum size of circular collar through experimental analyses with various collar sizes. To do so, we carried out hydraulic model experiments. In the case of with considering the collar, the effect of reduction of scour depth increased according to the increase of collar size. When size of collar is 2 as the ratio of collar diameter(W) to pier diameter(D), scour depth is decreased about 67% and deposition height is increased about 70%. The optimal size of collar proposed in this study is W/D=2 by analyzing reduction effect of scour depth, size of scour hole, and deposition height.