• Title/Summary/Keyword: scour depth

Search Result 160, Processing Time 0.022 seconds

Application of Ground Penetrating Radar for Assessing Riverbed Variation Near Bridge Piers (지하투과레이다를 이용한 교각 주변의 하상변화 조사)

  • Park, In-Chan;Cho, Won-Cheol;Lee, Jong-Kook
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • The assessment of erosional and depositional patterns near bridge piers is essential to understand the fluvial scour process. Geophysical surveys are particularly effective in determining the riverbed variations in a river and may also be of value for obtaining the previous scour history below the riverbed profile. In this study, GPR (Ground Penetrating Radar), as a non-destructive geophysical technique, was used to assess the existence and depth of existing and infilled scour thickness, streambed materials, and pre- and post- scour surfaces at the bridge piers in Han River, June 2002 and October 2002. The GPR acquisition system used for obtaining profiles of the shallow subsurface deposits was a portable GSSI SIR 2000 system with 100 and 400 MHz antennas. The GPR data obtained along the 24 bridge piers in the flow direction of the river and in the surroundings of 5 bridge piers were compared and presented in this study. It is concluded that GPR surveys can be effective in determining both the water depth and sub-bottom geological structure near the bridge piers and abutments provided that the appropriate instrumentation and operational procedures are applied.

Experimental Study on Local Bed Scour Due to Bridge Pier (교각에 의한 하상세굴에 관한 실험적 연구)

  • Lee, Jong Kyu;Jeong, Dong Won;Lee, Chang Hae;Yook, Woon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1349-1356
    • /
    • 1994
  • The results of laboratory experiments on the clear-water scour of cohesionless bed sediment for three types of pier shape were presented. According to the experimental data, the local scouring around the pier was initiated at $V/V_c=0.4{\sim}0.5$ and $Fr_p{\fallingdotseq}0.2$, and the relative local scour depths linearly increased with respect to the velocity ratio and the pier Froude number. The relative scour depth had the linear relationship with ${\tau}_r$ for ${\tau}_r$ < $10^{-4}$, but it tends to become constant for ${\tau}_r$ > $10^{-4}$, irrespective of ${\tau}_r$. And also the relative scour depths showed the close relationship with both the geometric standard deviation and the pier shape.

  • PDF

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

Bridge Pier Scour Protection by Sack Gabions (돌망태에 의한 교각세굴 방지)

  • Yun, Tae-Hun;Kim, Dae-Hong;Lee, Ji-Song
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.725-731
    • /
    • 2000
  • Experimental studies were conducted in a clear water condition to investigate the functioning of a sack gabion as a scour countermeasure at bridge piers. For different sizes of fill materials of sack gabions no difference was observed in the initial movement of sack gabions. Significant factors on the dislodging of sack gabions are approaching flow depth and velocity, pier width, and thickness and length of sack gabions. It was observed that the stability of the sack gabions is increased in a collective body of riprap stones than the placement of individual riprap stone. The length of a sack gabion has significant effect on its initial movement and the stability of a sack gabion was found to be increased by lengthening the length of gabions. The experimental results were used to derive formulas sizing gabions for scour protection at bridge piers. piers.

  • PDF

Field Evaluation of Scour Countermeasure Using Geobag (지오백 세굴보호공법의 현장 적용성 평가)

  • Park, Jae-Hyun;Kwak, Ki-Seok;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1251-1258
    • /
    • 2006
  • Field evaluation of new scour countermeasure using geobag and aggregate is performed to prepare for the basis of design and construction standard in Korea. Polyester non-woven geotextile is determined as a geobag material and tire cord is used to sew up the geobag which contain aggregate. Hwasang-gyo(bridge) is selected as a pilot test site through office review and field investigation. According to the design flood of Hwasang-gyo(bridge), the size and volume of geobag are calculated and construction area and required number of geobags are computed by considering the specification of the pier and foundation of the bridge. After construction, scour depth around geobag construction area is measured and the stability of geobag is ascertained by using pole and digital camera.

  • PDF

Prediction of Local Scour Around Bridge Piers Using GEP Model (GEP 모형을 이용한 교각주위 국부세굴 예측)

  • Kim, Taejoon;Choi, Byungwoong;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1779-1786
    • /
    • 2014
  • Artificial Intelligence-based techniques have been applied to problems where mathematical relations can not be presented due to complicatedness of the physical process. A representative example in hydraulics is the local scour around bridge piers. This study presents a GEP model for predicting the local scour around bridge piers. The model is trained by 64 laboratory data to build the regression equation, and the constructed model is verified against 33 laboratory data. Comparisons between the models with dimensional and normalized variables reveals that the GEP model with dimensional variables predicts better. The proposed model is now applied to two field datasets. It is found that the MAPE of the scour depths predicted by the GEP model increases compared with the predictions of local scours in laboratory scale. In addition, the model performance increases significantly when the model is trained by the field dataset rather than the laboratory dataset. The findings suggest that apart from the ANN model, GEP model is a sound and reliable model for predicting local scour depth.