• Title/Summary/Keyword: scientific context

Search Result 359, Processing Time 0.029 seconds

An Analysis of Learning Objectives of Biology Contents in SATIS 14-16 (SATIS 14-16 생물영역 단원의 학습목표 분석)

  • Kang, Soon-Ja;Chung, Young-Lan;Lee, Sun-Kil
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.3
    • /
    • pp.325-331
    • /
    • 1995
  • The purpose of this study is to analyze learning objectives of biology contents in SATIS 14-16. Modified the 5th NAEP three dimentional science assessment framework was used to analyze learning objectives of SATIS 14-16. This study will be a basic data for the development of STS programs in KOREA. The following results were obtained. 1. In a content dimension, 'structures and functions of organism'(63.9%) was the most frequently found, followed by 'the nature and our Iives'(22.1%), 'a continuity of Iife'(9.4%) and 'our surrounding Iives'(4.7%). 2. In a cognitive dimension, an understanding of scientific knowledge(32.7%) was the most frequently found, followed by an improvement of inquiry ability(25.6%), attitude(24.7%), and scientific knowledge and its application(17.0%). 3. In a context dimension, a personal context(32.8%) was the most frequently found, followed by a social context(27.3%), a scientific context(20.0%) and a technological context(20.0%). 4. There were some differences in behavior when each content was compared. In 'surrounding lives' and 'a continuity of life', an understanding of scientific knowledge was the most frequently found. In 'structures and functions of organism' and 'the nature and our lives', proportions of four behavioral catagories were relatively even. 5. There were some differences in context when each content was compared. In 'surrounding lives', scientific context was the most frequently found, whereas in 'structures and functions of lives', individual context was found the most frequently. In 'a continuity of life', scientific and social context were found more frequently than others. In 'the nature and our lives', social context was the most frequent one.

  • PDF

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Development of Survey Tool for the Scientific Character of Elementary Student (초등학생을 위한 과학인성 검사 도구 개발)

  • Nam, Ilkyun;Im, Sungmin
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.825-838
    • /
    • 2018
  • The purpose of this study is to develop a survey tool of scientific character for elementary student which connects science education and character education effectively by figuring out traits of elementary students' character being presented in teaching and learning context of elementary school science. For this, we adapted the theocratical model from the previous research which defined scientific character as the competencies being able to practice in concrete teaching and learning context of science. Based on this model, we developed the survey tool as 'Scientific Character Inventory for Elementary Student' to assess elementary students' scientific character as the competences to practice the virtues being pursued in the context of elementary school science and verified its reliability and validity. As a result of an exploratory and confirmatory factor analysis, we confirmed all the items could be summarized into 28 items and eight constructs such as scientific problem-solving, self-management, self-reflection, communication, interpersonal skill, community participation, global citizenship, and environmental ethics awareness. We found that minimum reliability coefficient of constructs was over than 0.5 and reliability coefficient of the total items was 0.878. And also, there was modest relationship between each construct and the total score of scientific character. These results show that the developed survey tool can be useful in evaluating the effectiveness of science character education. This study is meaningful in that it systematically reveals constructs of scientific character which can be raised in concrete context of science teaching and learning so as to suggest the survey tool to assess this.

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.

The Consistency of High school Students Responses Concepts of 'Atmospheric and Water Cycle' according to Task Contexts ('대기와 물의 순환' 관련 개념들에 대한 과제 상황에 따른 고등학생들의 응답의 일관성)

  • Jeong, Jin-woo;Jang, Myoung-Duk;Nam, Youn-kyeong
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.656-662
    • /
    • 2004
  • The purposes of this study was to analyze the knowledge sources and of high school students' responses on tasks in scientific context and tasks in everyday context, and was to investigate the relationship between the consistency of responses and cognitive style. One hundred fifteen students participated in study. The students were asked to solve ten paris of problems about several concepts of circulation of atmosphere and water. Each pair of the problems consisted of two questions which were about the same concept but were about different context. That is to say, one questions related to scientific context and the other related to everyday context. Every questions included one subquestion in other to investigate the students' sources of knowledge. The students' responses on two questions in each problem were analyzed in order to compare the sources of knowledge and examine the influence of task context. The results of the study can be summarized as follows: First, students' knowledge sources varied by task contexts. That is to say, the students selected 'Science activities in school' as main source in questions related scientific context and chose 'Experience in daily life' as main source in questions related to everyday context. Second, inconsistency score on all paris of problem was significantly higher than consistency score (p<.01). This result indicated students' responses were much dependent on context. third, field-dependent students were more dependent on context, considering higher inconsistency score than field-dependent ones.

Examining Elementary School Students' Awareness about Socio-scientific Issues and Solutions about Environmental Topics by Using Their Drawings (이미지 분석을 통한 초등학생들의 환경 관련 사회적 문제(SSI)와 해결방법에 대한 인식조사)

  • Lee, Yoonjeong;Ju, Eunjeong;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.1
    • /
    • pp.111-122
    • /
    • 2016
  • The purpose of this study was to investigate elementary school students' awareness about socio-scientific issues and solutions about environmental topics by using their drawings. For this study, 489 students were participated in 3 provincial regions, Incheon, Dangjin and Pohang in Korea. The students participated in a drawing activity to express their ideas of the socio-scientific issues and solutions related to 'environmental problems.' The analysis of the data include that the students displayed most awareness towards air pollution, water pollution and trash problems. However, the global environmental problems such as global warming and climate change were perceived very low. The interesting thing was about 8% of the students, who drew global environmental problems, tried to explain their drawings using scientific knowledge. But they revealed misconceptions as well. For instance, they were not good at connecting their science knowledge with environmental problems. About 80% of the students drew the pictures, showing solutions in personal context. They mainly drew 3 kinds of solutions: 'Reduce trash', 'Preserve ecosystem' and 'Saving of resources & energy'. Most students suggested to administrate the action plans. About 19% of the students drew 'campaign to save the forest' or 'develop alternative energy' in social context. And only 1 student drew UN conference to solve the environmental problems in national context.

Development of Program for Discretionary Activity Focused on Multiple Activity with Everyday-Life Materials to Enhance Scientific Creativity for Grade 6-7 Students and Exploring the Influence (과학창의력 신장을 위한 ‘일상생활 소재 다중활동’ 중심의 6~7학년 ‘재량활동’)

  • 김형석;정용재;곽성일;하은선;이선양;이현정
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.4
    • /
    • pp.344-356
    • /
    • 2004
  • In this study, we developed the program for 'Discretionary Activity' focusing on the multiple activities with everyday-life materials to enhance scientific creativity (MAEM-SC), which was specifically for students in the 6-7th grade according to the 7th curriculum in Korea. As important factors for scientific creativity, we selected the ability to find out the context relevant to scientific problems, the ability to connect the problem context to scientific knowledge, the ability to invent the ways to solve the problem scientifically, and ability to concentrate on the scientific problem solving activity. The topics of the program were drawn from common and familiar things in our everyday contexts, such as human body, everyday tools, food, play and toys, and everyday episodes. The multiple activities here mean the activities which are systematically constructed with the various types of activities with a specific intention. The multiple activities were designed in three types, that is, series type, parallel type, and combination type. Each of them consists of the several activities as follows: estimating and measuring, carrying out an experiment using body, inventing implement (tools), thinking statistically, writing creatively with scientific themes, and connecting one concept to another concept etc. Through a trial of the program, we found that this program has some positive influence on the enhancement both of the ability to find out the context relevant to scientific problems and the ability to connect it to the students' existing scientific knowledge.

  • PDF

A Study of the Scientific Characteristic of Mathematical Concepts and Curriculum Design (수학적 개념의 과학적 성격과 교육과정 구성과의 관련성 연구)

  • 고정화
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.2
    • /
    • pp.213-228
    • /
    • 2002
  • We know that curriculum is, first of all, related to teaching materials, namely, contents. Therefore, when we think of mathematics curriculum, we must take account of characteristic of mathematics. Vygotsky has studied the development of scientific concepts and everyday concepts. According to Vygotsky, scientific concepts grow down through spontaneous concepts; spontaneous concepts grow upward through scientific concepts. And mathematics is a representative of subjects dealing with scientific or theoretical concept. Therefore, his study provides scientific basis for mathematics curriculum design. In this context, Davydov notes that everyday concepts are developed through empirical abstraction, while scientific concepts require a theoretical abstraction. And Davydov constructed the curriculum materials for the teaching of number concept. Davydov's curriculum is an example of reflecting Vygotsky' theoretical view and his view about the types of abstraction. In particular, it represents mathematical characteristic of a 'science' by introducing number concept through quantitative relationship and use of signs. In conclusion, stance mathematical concepts have scientific characteristic, mathematics curriculum reflects this characteristic.

  • PDF

The Differences of Graph Construction of Middle School Students on Daily-life and Scientific Contexts by the Views on the Nature of Scientific Measurement (중학생의 측정의 본성에 대한 견해에 따른 일상 및 과학적 맥락에서의 그래프 구성의 차이)

  • Lee, Jaewon;Ryu, Goeun;Lee, Kyuyul;Noh, Taehee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.473-485
    • /
    • 2019
  • In this study, we investigated the differences of graph constructed by middle school students in daily-life and scientific contexts according to the views on the nature of scientific measurement. A test consisting of three similar data sets regarding daily-life and scientific contexts was developed, and administered to 151 ninth graders. They were expected to construct proportional, inverse-proportional, and increasing and become constant form of graphs for each data set. Graphs constructed were analyzed in the aspects of constructing a trend line (types of a trend line, interpolation/extrapolation), selecting axes variables, scaling axes, and plotting points. Analyses of the results revealed that the students with set paradigm tended to construct a curved trend line, while those with point paradigm constructed a broken trend line in inverse-proportional graph questions. In the aspects of interpolation/extrapolation, most students with set paradigm performed both interpolation and extrapolation better than those with point paradigm in scientific context. Most students with set paradigm performed both interpolation and extrapolation regardless of contexts, while the proportion of interpolation of those with point paradigm was higher in scientific context than in daily-life context. In selecting axes variables, scaling axes, and plotting dots, there were no statistically significant differences between set and point paradigms. On the bases of the results, educational implications for improving graph construction skills of middle school students are discussed.

The Influences of the Context of Discrepant Events on the Conceptual Change Process Using Cognitive Conflict Strategy (불일치 사례의 맥락이 인지 갈등 전략을 이용한 개념 변화 과정에 미치는 영향)

  • Choi, Sook-Yeong;Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.445-452
    • /
    • 2009
  • In this study, the influences of the context of discrepant events on the conceptual change process using cognitive conflict strategy were investigated in terms of students' cognitive and motivational variables such as cognitive conflict, situational interest, attention, effort, conceptual understanding. A preconception test was administered to 536 seventh graders. A test of response to a discrepant event and a situational interest questionnaire were then administered. The context of discrepant events, either scientific or everyday, was randomly presented to the subjects. After learning the concept of density, the tests of attention, effort, and conceptual understanding were administered. The reponses of 194 students who had been found to possess the target misconception were analyzed. The results revealed that the scientific-context discrepant event induced higher cognitive conflict than everyday-context one. The context of discrepant events, however, did not show significant correlations with situational interest, attention, effort, and/or conceptual understanding. The result of path analysis indicated that the context of discrepant events both directly influenced cognitive conflict and indirectly influenced conceptual understanding via cognitive conflict.