• Title/Summary/Keyword: school climate

Search Result 1,336, Processing Time 0.026 seconds

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

Plan to revitalize social and environmental education to improve the effectiveness of carbon neutrality in Jeju Special Self-Governing Province (제주특별자치도의 탄소중립 실효성 제고를 위한 사회환경교육 활성화 방안)

  • Kyung-Sam Moon;Tai-Hyun Ha
    • Journal of Digital Convergence
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • In order to improve the effectiveness of carbon neutrality in Jeju Special Self-Governing Province, this study identifies the current state of social environmental education through literature research, excluding school environmental education being implemented in elementary, middle, and high schools in the province, and identifies shortcomings or problems. The purpose is to establish a plan to systematically and integratedly operate social environmental education, and the derived plan can be used as a guide to change environmental awareness and induce eco-friendly behavior to improve the effectiveness of carbon neutrality. As a result of the study, Jeju Special Self-Governing Province established a consultative body with environmental education institutions, organizations and expert groups operating dispersed throughout the province through the substantial operation and support of the environmental education center currently being entrusted, to identify the current status and develop content necessary for establishing environmental education policies, establishing a platform to enable information sharing, role division, regular communication, empathy, and policy feedback, and on-site environmental education centered on the field to stimulate emotions and personalize environmental problems so that environmental problems can be properly recognized. Emphasizing the necessity.

Monitoring Vegetation Structure Changes in Urban Wetlands (도시 내 습지의 식생구조 변화 모니터링)

  • Kim, Na-Yeong;Nam, Jong-Min;Lee, Gyeong-Yeon;Lee, Kun-Ho;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.135-154
    • /
    • 2023
  • Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

Analysis of biodiversity change trend on urban development project - Focusing on terrestrial species in Environmental Impact Assessment - (도시의 개발 사업에 따른 생물다양성 변화 추세 분석 - 환경영향평가의 육상 동물종을 중심으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Jeon, Yoon-Ho;Choi, Ji-Young;Kim, Shin-Woo;Hwang, Hye-Mi;Kim, Da-Seul;Moon, Hyun-Bin;Bae, Ji-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.21-32
    • /
    • 2023
  • The Environmental Impact Assessment (EIA) plays a pivotal role in predicting the potential environmental impacts of proposed developments and planning appropriate mitigation measures to minimize effects on species. However, as concerns over biodiversity loss rise, there's ongoing debate about the efficacy of these mitigation plans. In this study, we utilized data from EIAs and post-environmental impact surveys to understand the trends in biodiversity during construction and operation phases. By examining 30 urban development projects, we categorized species richness indices of mammals, birds, amphibians, and reptiles into pre-construction, during construction, and post-construction operational stages. The biodiversity trends were analyzed based on the rate of change in these indices. The results revealed three distinct biodiversity change patterns: (A) An initial increase in biodiversity indices post-development, followed by a gradual decline over time; (B) a sustained increase in biodiversity as a result of mitigation measures; and (C) a continuous decline in biodiversity post-development. Furthermore, all species exhibited a higher rate of biodiversity decline during the construction phase compared to the operational phase, with mammals showing the most significant rate of change. Notably, the biodiversity change rate during operation was generally lower than during construction. In particular, mammals seemed to be most influenced by mitigation measures, displaying the smallest rate of change. This study provides empirical evidence on the efficacy of mitigation measures and deliberates on ways to enhance their effectiveness in minimizing the adverse impacts of urban development on biodiversity. These findings can serve as foundational data for addressing terrestrial biodiversity reduction.

Analysis of Ecological Connectivity of Forest Habitats Using Spatial Morphological Characteristics and Roadkill Data (공간형태학적 특성 및 로드킬 자료를 활용한 산림서식지의 생태적 연결성 분석)

  • Hyunjin Seo;Chulhyun Choi;Seungwon Lee;Jinhyo Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.75-82
    • /
    • 2024
  • This study examined the spatial morphological patterns of forest habitats and the characteristics of roadkill occurrences in the forests of Mungyeong, Yecheon, Yeongju, Andong, and Bonghwa in Gyeongsangbukdo. It involved building a resistance map between habitats and analyzing connectivity based on the least-cost distance. The analysis of the distance between the forest habitat Cores derived from MSPA and roadkill points showed that roadkill occurrences were concentrated approximately 74.11 m away from the Cores, with most roadkills happening within 360m from the habitats. The connectivity analysis between core habitats larger than 1 km2 revealed 141 core habitats and 242 least-cost paths between them. The corridor distance value was found to be highest in Mungyeong city, indicating an urgent need for strategies to enhance habitat connectivity there. This research is expected to serve as foundational data for developing strategies to enhance ecosystem connectivity and restore habitats, by analyzing ecosystem connectivity and roadkill issues due to habitat fragmentation.

A Study on Effects of a MAKEathon Programme Focusing on Problem-Solving for Sustainable Development (지속가능발전 문제해결 중심 메이커톤 프로그램의 개발 및 효과)

  • Lee, Hana;Park, Curie;Lee, Yoon-Jung
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.4
    • /
    • pp.117-133
    • /
    • 2023
  • The purpose of this study is to develop and evaluate a MAKEathon programme designed to address climate change and dietary concerns, and to enhance competencies related to entrepreneurship and sustainable development. The programme was developed as a voluntary-based extracurriculum for the middle and high school students in South Korea. In order to verify the effectiveness, surveys were conducted before and after the program, focusing on the measures of the three competencies i.e. sustainable development competencies, creativity, and entrepreneurship, as well as the programme satisfaction and demographic background. Paired t-tests of pre-/post-tests were conducted on the responses of 29 participants and the results indicate significant improvement in the three competencies and high programme satisfaction. These findings underscore the value of incorporating extracurricular programmes related to sustainability in home economics education, suggesting potential for broader application in topics like clothing, food, and housing. Such programmes are poised to enhance educational effectiveness in teaching problem-solving for sustainable development.