DOI QR코드

DOI QR Code

Study on Enhancement of Ammonia Generation for Effective Collision Frequency

유효충돌빈도를 고려한 암모니아 생성 증대기법 연구

  • Sejin Kim (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Yongseok CHoi (Dept. of Chemical and Biological Engineering, Korea University) ;
  • Hyunchul Park (Dept. of Aerospace and Mechanical Engineering, Dong Seoul University)
  • 김세진 (한국항공대 항공우주 및 기계공학부) ;
  • 최용석 (고려대학교 화공생명공학과) ;
  • 박현철 (동서울대학교 항공기계과)
  • Received : 2023.07.24
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

기후변화 대응을 위하여, 항공 분야를 포함한 운송 분야에서 국제온실가스 감축제도 도입 추진 및 대체 에너지 개발 등 환경문제에 대한 연구개발이 활발하다. 그 중 무탄소 에너지원으로 주목받는 암모니아 연료에 대한 관심이 증대되고 있다. 암모니아는 액화 및 운반이 용이하며, 메탄올과 비슷한 에너지 밀도 등의 장점이 있다. 그러나 폭발성 및 독성으로 취급성이 어렵다. 본 연구에서는 암모니아에 비해 취급이 용이한 요소수에 고온의 수분으로 열분해와 가수분해 반응을 유도하여 안정적인 암모니아 발생을 시도하고자 하였다. 암모니아 가수분해 촉진을 위해 고온의 증기를 이용하였고 이론 당량비 미만의 암모니아 발생원인 규명을 하고자 했다. 기체분자운동론에 기인하여 가수분해 촉진을 위한 충분한 충돌빈도가 이루어지지 않았다는 가설을 수립했다. 수분 공급량 변화를 통해 미반응 이소시안산의 가수분해 여부를 실험하였고 암모니아 발생량이 증가함을 확인하였다. 일정 구간동안 암모니아 발생량 증가는 증기 온도, 수분공급유량에 종속됨을 알 수 있었다.

Keywords

Acknowledgement

이 논문은 2022년 동서울대학교 산학협력단 부설 연구지원센터의 지원에 의하여 연구되었음.

References

  1. S. J. Ku, "International aviation greenhouse gas reduction management task", National Assembly Research Service, 2020 Rept, no.156, July 2020.
  2. H. K. Lee, Y. M. Woo and M. J. Lee "The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality -Part I Background and Economic Feasibility of Expanding the Supply of Fuel Ammonia", J.Korean Soc. Combust. vol. 26, no. 1, pp. 59-83, 2021. https://doi.org/10.15231/jksc.2021.26.1.059
  3. H. K. Lee, Y. M. Woo and M. J. Lee "The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality -Part II R&D Trends and Technical Feasibility Analysis", J.Korean Soc. Combust. vol. 26, no. 1, pp. 84-106, 2021 https://doi.org/10.15231/jksc.2021.26.1.084
  4. S. I. Kim, H.G. Kwak and Y. Won, "Process Simulation of the Effect of Ammonia Co-firing on the Supercritical Boiler System for Reduction of Greenhouse Gas", J.Korea Soc. combust. vol. 26, no. 4, pp. 1-12, 2021 https://doi.org/10.15231/jksc.2021.26.4.001
  5. A. Hayakawa, Y. Arakawa, R. Mimoto, K. Somarathne, T. Kudo and H. Kobayashi, "Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor", Int J. Hydrogen Energ. vol 42, pp. 14010-14018, 2017 https://doi.org/10.1016/j.ijhydene.2017.01.046
  6. X. Hua, V.M. Augstin and J.B Philip, "Study on premixed combustion characteristics of co-firing ammonia/methane fuels", Energy. vol 140, pp. 125-135, Dec 2017. https://doi.org/10.1016/j.energy.2017.08.077
  7. J. W. Zhang, T.M. Ito, H.K. Ishill, S.K. Ishihara and T.S. Fujimori "Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio", Fuel. vol. 267, pp. 117~166, May 2020. https://doi.org/10.1016/j.fuel.2020.117166
  8. S. H. Lee, Y. Choi, C.W. Park, H.S. Kim amd Y.D. Lee, "A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine", Trans. of Korean Hydrogen and New Energy Society, vol 31, no. 4, pp. 372-379, 2020. https://doi.org/10.7316/KHNES.2020.31.4.372
  9. E. J. Heo "Ammonia Fuel Ship Report", Korea Register, 2021 Rept, no. 2021-ETC-01, Jan 2021.
  10. M. B Andrias "Catalytic urea decomposition, side-reactions and urea evaporation in the selective catalytic reduction of NOx", Ph.D. Dissertation, ETH Zurich, Switzerland, Thesis 20813, 2012
  11. Arrhenius Equation, https://chem.libretexts.org
  12. W. H. Weinberg, "Eley-Rideal Surface Chemistry: Direct Reactivity of Gas Phase Atomic Hydrogen with Adsorbed Species", Acc. Chem, Res, vol. 29, no. 10, 1996
  13. G. Schaub, D. Unruh, J. Wang and T. Turek "Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter", Chemical Engineering and Processing, vol. 42, pp 365-371, 2003 https://doi.org/10.1016/S0255-2701(02)00056-9
  14. P. D. Desai, "Thermodynamic Properties of Vanadium", International Journal of Thermophysics, vol. 7, no. 1, 1986
  15. K. W. Ku, J.G. Hong, C.W. Park, K.Y. Chung and S.H. Sohn, "Effects of Various Factors on the Conversion Efficiency of Urea Solution in a Urea Selective Catalytic Reduction System", Energy Fuel, Vol. 28, no. 9, pp. 5959-5967, Aug 2014. https://doi.org/10.1021/ef501358j