DOI QR코드

DOI QR Code

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification

제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안

  • Choi, Yuri (Graduate School of Horticultural Science, College of Applied Life Sciences, Jeju National University ) ;
  • Park, Sookuk (Lab. of Landscape Architecture, Department of Horticultural Science, College of Applied Life Sciences, Jeju National University)
  • 최유리 (제주대학교 생명자원과학대학 원예학과 대학원) ;
  • 박수국 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공 조경학연구실)
  • Received : 2024.03.19
  • Accepted : 2024.04.09
  • Published : 2024.06.30

Abstract

This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

본 연구는 구성 요소가 다른 제주시 주차장 6곳에서 실측한 미기후 자료와 포장 알베도·수목 요소를 달리한 컴퓨터 시뮬레이션을 통해 여름철 인간 열환경을 분석하고 저감 방안을 제안하는 데 목적을 둔다. 실측한 경우, 알베도로 인한 결과는 유의성이 없었으나 양지와 음지의 차이는 유의성을 보였다. 양지는 PET가 '매우 더움' 단계였으나, 음지는 2단계 낮은 '따뜻함' 단계로 나타났고, UTCI 역시 양지가 '매우 강한 열 스트레스' 단계인 반면 음지는 1단계 낮은 '강한 열 스트레스' 단계를 보이며, 태양 복사에너지의 유입을 줄이는 교목의 역할을 확인할 수 있었다. 시뮬레이션 결과도 실측된 알베도 값을 사용했기 때문에 실측 결과와 유사하게 시나리오 간 차이는 크지 않았다. 수목의 경우, 수관폭이 넓고, 엽면적지수가 높으며, 식재 간격이 좁은 시나리오가 인간 열환경을 저감하는 데 효과적이었고, 수고에 따른 차이는 각 시나리오별 상이한 결과를 보였다. 가장 낮은 PET 값을 보인 시나리오는 H9W9L3D8(수고 9m, 수관폭 9m, 엽면적지수 3.0, 식재 간격 8m)로, 현재 조성된 시나리오와 비교했을 때 PET 0.7단계 하락한 것으로 나타났다. 이로써 조경 요소 중 바닥 포장보다는 교목이 여름철 인간 열환경에 주는 영향이 크다는 점을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 2024학년도 제주대학교 교육・연구 및 학생지도비 지원에 의해서 연구되었습니다.

References

  1. Aboelata, A. and S. Sodoudi(2019) Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment 166, 106407.
  2. Angel, S., J. Parent, D. L. Blei, and D. Potere(2011) The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Progress in Planning 75(2):53-107
  3. De Abreu-Harbich, L. V., L. C. Labaki, and A. Matzarakis(2015) Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning 138: 99-109.
  4. Del Carpio, J. A. V., D. L. Marinoski, G. Triches, R. Lamberts, and J. V. S. de Melo(2016) Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field. Solar Energy 134: 72-81.
  5. Erell, E., D. Pearlmutter, D. Boneh, and P. B. Kutiel(2014) Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate 10: 367-386.
  6. Gago, E. J., J. Roldan, R. Pacheco-Torres, and J. Ordonez(2013) The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews 25: 749-758.
  7. Howard, L.(1833) The Climate of London, Deduced from Meteorological Observations. Volume 2, London.
  8. Jo, S., H. Kong, N. Choi, Y. Shin, and S. Park(2023) Comparison of the thermal environment by local climate zones in summer: A case study in Suwon, Republic of Korea. Sustainability 15(3): 2620.
  9. Karimi, A., H. Sanaieian, H. Farhadi, and S. Norouzian-Maleki(2020) Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports 6: 1670-1684.
  10. Kim, E. and H. Kim(2020) Improving thermal environment and thermal comfort by modifying paving and planting of a covered parking lot - Focusing on Mansu public parking lot in Namdong-gu, Incheon, Urban Design Institute of Korea 21(2): 117-131.
  11. Lee, H., H. Mayer, and L. Chen(2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning 148: 37-50.
  12. Lee, H., J. Holst, and H. Mayer(2013) Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Advances in Meteorology. 2013.
  13. Lim, H., S. Jo, and S. Park(2022) Analysis of thermal environment modification effects of street trees depending on planting types and street directions in summertime using ENVI-met simulation. Journal of the Korean Institute of Landscape Architecture 50(2): 1-22.
  14. Lopez-Cabeza, V. P., S. Alzate-Gaviria, E. Diz-Mellado, C. Rivera-Gomez, and C. Galan-Marin(2022) Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustainable Cities and Society 81: 103872.
  15. Matzarakis, A. and H. Mayer(1996) Another kind of environmental stress: thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control Newsletters 18: 7-10.
  16. Milosevic, D. D., I. V. Bajsanski, and S. M. Savic(2017) Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban Forestry & Urban Greening 23: 113-124.
  17. Morakinyo, T. E., L. Kong, K. K. L. Lau, C. Yuan, and E. Ng(2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Builiding and Environment 115: 1-17.
  18. Min, J., J. Eum, U. Sung, J. Son, and J. Kim(2022) Scenario-based analysis on the effects of green areas on the improvement of urban thermal environment. Journal of the Korean Institute of Landscape Architecture 50(6): 1-14.
  19. Mohammad, P., S. Aghlmand, A. Fadaei, S. Gachkar, D. Gachkar, and A. Karimi(2021) Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate 40: 100993.
  20. Oke, T. R.(1982) The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1-24.
  21. Park, S.(2011) Human-Urban Radiation Exchange Simulation Model. PHD Dissertation, University of Victoria, Victoria, B.C., Canada.
  22. Park, S., H. Kong, and H. Kang(2022) Comparison of differences on microclimatic factors and human thermal sensation between in situ measurement and computer modeling. Ecology and Resilient Infrastructure 7(1): 43-52.
  23. Rahman, M. A., C. Hartmann, A. Moser-Reischl, M. F. von Strachwitz, H. Paeth, H. Pretzsch, and T. Rotzer(2020) Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology 287: 107947.
  24. Rizwan, A. M., L. Y. Dennis, and L. I. U. Chunho(2008) A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20(1): 120-128.
  25. Sen, S., J. P. R. M. R. Fernandez, and J. Roesler(2020) Reflective parking lots for microscale urban heat island mitigation. Transportation Research Record 2674(8): 663-671.
  26. Shashua-Bar, L. and M. E. Hoffman(2000) Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings 31(3): 221-235.
  27. Sodoudi, S., H. Zhang, X. Chi, F. Muller, and H. Li(2018) The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry & Urban Greening 34: 85-96.
  28. Taha, H.(1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25(2): 99-103.
  29. Taleghani, M.(2018) Outdoor thermal comfort by different heat mitigation strategies-A review. Renewable and Sustainable Energy Reviews 81: 2011-2018.
  30. Taleghani, M., D. J. Sailor, M. Tenpierik, and A. van den Dobbelsteen(2014) Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment 73: 138-150. 
  31. Taleghnai, M. and U. Berardi(2018) The effect of pavement characteristics on pedestrians' thermal comfort in Toronto. Urban Climate 24: 449-459.
  32. Teoh, M. Y., M. Shinozaki, K. Saito, and I. Said(2022) Studying Outdoor Thermal Comfort and Resilience in an Urban Design Perspective: A Case Study in IPOH Old Town and New Town, Malaysia. In Routledge Handbook of Resilient Thermal Comfort(pp. 259-275). Routledge. 
  33. UN-Habitat(2020) World cities report 2020: The Value of Sustainable Urbanization.