• Title/Summary/Keyword: scheduling management

Search Result 1,280, Processing Time 0.024 seconds

Predicting Due Dates under Various Combinations of Scheduling Rules in a Wafer Fabrication Factory

  • Sha, D.Y.;Storch, Richard;Liu, Cheng-Hsiang
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.9-27
    • /
    • 2003
  • In a wafer fabrication factory, the completion time of an order is affected by many factors related to the specifics of the order and the status of the system, so is difficult to predict precisely. The level of influence of each factor on the order completion time may also depend on the production system characteristics, such as the rules for releasing and dispatching. This paper presents a method to identify those factors that significantly impact upon the order completion time under various combinations of scheduling rules. Computer simulations and statistical analyses were used to develop effective due date assignment models for improving the due date related performances. The first step of this research was to select the releasing and dispatching rules from those that were cited so frequently in related wafer fabrication factory researches. Simulation and statistical analyses were combined to identify the critical factors for predicting order completion time under various combinations of scheduling rules. In each combination of scheduling rules, two efficient due date assignment models were established by using the regression method for accurately predicting the order due date. Two due date assignment models, called the significant factor prediction model (SFM) and the key factor prediction model (KFM), are proposed to empirically compare the due date assignment rules widely used in practice. The simulation results indicate that SFM and KFM are superior to the other due date assignment rules. The releasing rule, dispatching rule and due date assignment rule have significant impacts on the due date related performances, with larger improvements coming from due date assignment and dispatching rules than from releasing rules.

Batch Scheduling Algorithm with Approximation of Job Completion Times and Case Studies (작업완료시각 추정을 활용한 배치 스케줄링 및 사례 연구)

  • Kim, Song-Eun;Park, Seong-Hyeon;Kim, Su-Min;Park, Kyungsu;Hwang, Min Hyung;Seong, Jongeun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.23-32
    • /
    • 2020
  • Many small and medium-sized manufacturing companies process various product types to respond different customer orders in a single production line. To improve their productivity, they often apply batch processing while considering various product types, constraints on batch sizes and setups, and due date of each order. This study introduces a batch scheduling heuristic for a production line with multiple product types and different due dates of each order. As the process times vary due to the different batch sizes and product types, a recursive equation is developed based on a flow line model to obtain the upper bound on the completion times with less computational complexity than full computation. The batch scheduling algorithm combines and schedules the orders with same product types into a batch to improve productivity, but within the constraints to match the due dates of the orders. The algorithm incorporates simple and intuitive principles for the purpose of being applied to small and medium companies. To test the algorithm, two case studies are introduced; a high pressure coolant (HPC) manufacturing line and a press process at a plate-type heat exchanger manufacturer. From the case studies, the developed algorithm provides significant improvements in setup frequency and thus convenience of workers and productivity, without violating due dates of each order.

A Study of Construction Quality Management System using QR code (QR코드를 활용한 품질경영시스템에 관한 연구)

  • Park, Sang-Min;Lim, Tae-Kyung;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.137-139
    • /
    • 2012
  • This paper presents a system architecture and database of construction quality management system which encourages real time information tracking and monitoring. It improves the real time quality record tracking by using QR code technology in the project delivery. The advantages and issues relative to QR code and the database structures of the tracking system are presented. Conventional project scheduling system, operation modeling and analysis system, and quality management system are hybridized using QR code technology. The system improves project quality management by tracking the atomic tasks which consists of a construction process at the lowest level of construction hierarchy. It analyzes the quality records to determine the causes of abnormality and/or nonconformity. Using QR code technology, the construction quality management system may be more effective than the conventional one. It was confirmed that the quality management processes in construction project delivery can be more visible and controllable by integrating QR code technology, project scheduling system, and quality management system.

  • PDF

A Parallel Machine Scheduling Problem with Outsourcing Options (아웃소싱을 고려한 병렬기계 일정계획 연구)

  • Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • This paper considers an integrated decision for scheduling and outsourcing(or, subcontracting) of a finite number of jobs(or, orders) in a time-sensitive make-to-order manufacturing environment. The jobs can be either processed in a parallel in-house facilities or outsourced to subcontractors. We should determine which jobs should be processed in-house and which jobs should be outsourced. And, we should determine the schedule for the jobs to be processed in-house. If a job is determined to be processed in-house, then the scheduling cost(the completion time of the Job) is imposed. Otherwise(if the job should be outsourced), then an additional outsourcing cost is imposed. The objective is to minimize the linear combination of scheduling and outsourcing costs under a budget constraint for the total available outsourcing cost. In the problem analysis, we first characterize some solution properties and then derive dynamic programming and branch-and- bound algorithms. An efficient heuristic is also developed. The performances of the proposed algorithms are evaluated through various numerical experiments.

An Emission-Aware Day-Ahead Power Scheduling System for Internet of Energy

  • Huang, Chenn-Jung;Hu, Kai-Wen;Liu, An-Feng;Chen, Liang-Chun;Chen, Chih-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4988-5012
    • /
    • 2019
  • As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the problems faced by the current smart grid framework. Notably, the conventional day-ahead power scheduling of the smart grid should be redesigned in the IoE architecture to take into consideration the intermittence of scattered renewable generations, large amounts of power consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this research to maximize the usage of distributed renewables and reduce carbon emission caused by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is employed to provide preferred charging options for moving EVs and flatten the load profile simultaneously. The simulation results revealed that the proposed power scheduling mechanism not only achieves emission reduction and balances power load and supply effectively, but also fits each individual EV user's preference.

An Improved Adaptive Scheduling Strategy Utilizing Simulated Annealing Genetic Algorithm for Data Center Networks

  • Wang, Wentao;Wang, Lingxia;Zheng, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5243-5263
    • /
    • 2017
  • Data center networks provide critical bandwidth for the continuous growth of cloud computing, multimedia storage, data analysis and other businesses. The problem of low link bandwidth utilization in data center network is gradually addressed in more hot fields. However, the current scheduling strategies applied in data center network do not adapt to the real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources due to the lack of intelligent management. In this paper, we present an improved adaptive traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA). Inspired by the idea of software defined network, when a flow arrives, our strategy changes the bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the flow by considering the scheduling of the different pods as well as the same pod. It is implemented through software defined network technology. Simulation results show that the bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.

Development of An On-line Scheduling Framework Based on Control Principles and its Computation Methodology Using Parametric Programming (실시간 일정계획 문제에 대한 Control 기반의 매개변수 프로그래밍을 이용한 해법의 개발)

  • Ryu, Jun-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1215-1219
    • /
    • 2006
  • Scheduling plays an important role in the process management in terms of providing profit-maximizing operation sequence of multiple orders and estimating completion times of them. In order to takes its full potential, varying conditions should be properly reflected in computing the schedule. The adjustment of scheduling decisions has to be made frequently in response to the occurrence of variations. It is often challenging because their model has to be adjusted and their solutions have to be computed within short time period. This paper employs Model Predictive Control(MPC) principles for updating the process condition in the scheduling model. The solutions of the resulting problems considering variations are computed using parametric programming techniques. The key advantage of the proposed framework is that repetition of solving similar programming problems with decreasing dimensionis avoided and all potential schedules are obtained before the execution of the actual processes. Therefore, the proposed framework contributes to constructing a robust decision-support tool in the face of varying environment. An example is solved to illustrate the potential of the proposed framework with remarks on potential wide applications.

A Review on the CPU Scheduling Algorithms: Comparative Study

  • Ali, Shahad M.;Alshahrani, Razan F.;Hadadi, Amjad H.;Alghamdi, Tahany A.;Almuhsin, Fatimah H.;El-Sharawy, Enas E.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • CPU is considered the main and most important resource in the computer system. The CPU scheduling is defined as a procedure that determines which process will enter the CPU to be executed, and another process will be waiting for its turn to be performed. CPU management scheduling algorithms are the major service in the operating systems that fulfill the maximum utilization of the CPU. This article aims to review the studies on the CPU scheduling algorithms towards comparing which is the best algorithm. After we conducted a review of the Round Robin, Shortest Job First, First Come First Served, and Priority algorithms, we found that several researchers have suggested various ways to improve CPU optimization criteria through different algorithms to improve the waiting time, response time, and turnaround time but there is no algorithm is better in all criteria.

Optimal Replacement Scheduling of Water Pipelines

  • Ghobadi, Fatemeh;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.145-145
    • /
    • 2021
  • Water distribution networks (WDNs) are designed to satisfy water requirement of an urban community. One of the central issues in human history is providing sufficient quality and quantity of water through WDNs. A WDN consists of a great number of pipelines with different ages, lengths, materials, and sizes in varying degrees of deterioration. The available annual budget for rehabilitation of these infrastructures only covers part of the network; thus it is important to manage the limited budget in the most cost-effective manner. In this study, a novel pipe replacement scheduling approach is proposed in order to smooth the annual investment time series based on a life cycle cost assessment. The proposed approach is applied to a real WDN currently operating in South Korea. The proposed scheduling plan considers both the annual budget limitation and the optimum investment on pipes' useful life. A non-dominated sorting genetic algorithm is used to solve a multi-objective optimization problem. Three decision-making objectives, including the minimum imposed LCC of the network, the minimum standard deviation of annual cost, and the minimum average age of the network, are considered to find optimal pipe replacement planning over long-term time period. The results indicate that the proposed scheduling structure provides efficient and cost-effective rehabilitation management of water network with consistent annual budget.

  • PDF

A Note on Online Scheduling Problem of Three and Four Machines Under General Eligibility (작업이 일반적인 자격을 갖는 상황에서 3대의 기계와 4대의 기계의 온라인 스케줄링 문제에 대한 소고)

  • Park, Jong-Ho;Chang, Soo-Y.;Lim, Kyung-Kuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.3
    • /
    • pp.213-217
    • /
    • 2009
  • We consider the online scheduling problems of three and four machines under eligibility constraint. Respectively for the cases of three and four machines, we prove that AW algorithm has competitive ratios of $\frac{5}{2}$ and 3 which are shown to be optimal. Also, we show that the same results hold for the semi-online cases with prior knowledge of the total and the largest processing time.