
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 10, Oct. 2019                4988 
Copyright ⓒ 2019 KSII 

An Emission-Aware Day-Ahead Power 
Scheduling System for Internet of Energy 

 

Chenn-Jung Huang1,2*, Kai-Wen Hu2, An-Feng Liu1, Liang-Chun Chen3, and Chih-Ting Chen1 
1Department of Computer Science & Information Engineering, National Dong Hwa University 

2Department of Electrical Engineering, National Dong Hwa University 
3Department of Management, Fo Guang University, Yilan, Taiwan. 

*Corresponding author : Chenn-Jung Huang 

 

Received August 25, 2018; revised November 23, 2018; accepted April 16, 2019;  

published October 31, 2019 

 

Abstract 
As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the 

problems faced by the current smart grid framework. Notably, the conventional day-ahead 
power scheduling of the smart grid should be redesigned in the IoE architecture to take into 
consideration the intermittence of scattered renewable generations, large amounts of power 
consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). 
Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this 
research to maximize the usage of distributed renewables and reduce carbon emission caused 
by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is 
employed to provide preferred charging options for moving EVs and flatten the load profile 
simultaneously. The simulation results revealed that the proposed power scheduling 
mechanism not only achieves emission reduction and balances power load and supply 
effectively, but also fits each individual EV user’s preference.  
 

Keywords: power scheduling, electric vehicle charging, emission reduction, soft 
computing, Internet of Energy 

 

 

http://doi.org/10.3837/tiis.2019.10.010                                                       ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 10, October 2019            4989 

1. Introduction 

In the past decade, numerous research efforts have been devoted to the issues of emission 

reduction and efficient usage of the penetrated renewables. Recently, a newly introduced 
energy network concept, called the Internet of Energy (IoE), is adopted by researchers to 
tackle the power management problems caused by the surging growth of dispersed 
renewables, charging/discharging of electric vehicles (EVs) and battery storage, and smart 
meters [1]. Similar to the approach taken in the Internet, energy routers [2] is employed in 
the IoE framework to interconnect dispersed power generations and assist in energy sharing 
of the whole power market on a large scale [3].  

On the basis of present levels of information integration, the IoE coordinates the owners 
of dispersed power generations to sell the power to others facing power shortage during peak 
load periods [4]. A suitable day-ahead power scheduling scheme that achieves load peak 
reduction is demanded to timely collect and analyze the increasingly data collected from the 
dispersed power generations, smart metering infrastructure, and charging/discharging of EVs 
and battery storage facilities in order to assist in the power market operator optimizing 
short-term power usage to prevent the power crisis from surging demand during peak loads 
and deteriorating greenhouse effect. 

In the recent literature, several researchers proposed algorithms to tackle the short-term 
power problem for the future IoE. Hou et al. formulated the power exchange and storage 
problem for IoEs and presented heuristics to solve the optimization problem by transforming 
the NP-hard optimization into classic knapsack problem [4]. Zhang et al. took into 
consideration the intermittence of renewable generations and proposed a distributed 
consensus-ADMM power management algorithm [5]. The power management problem for 
the IoE was formulated as a three-stage Stackelberg game in the work of Zhou et al. [6]. The 
microgrid, the power utility company, and the consumers act as the players in Stackelberg 
game, and all players’ profits and the power market reliability were effectively achieved. Lin 
et al. optimized the IoE operation by allowing prosumers to employ battery storage utilities 
to charge and discharge the electricity and shifted the peak load demand effectively [7]. Du 
et al. presented a hierarchical power management scheme for the IoE to exchange 
tremendous amounts of power and information for renewable-grid deployment on a large 
scale [8]. Dou et al. took power network security into consideration and developed four 
types of differential hybrid Petri-net control mechanism, in which the power generated by 
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distributed renewables were fully utilized to meet peak electricity load [9].  

The integration of EVs and battery storage utilities with microgrids have been studied 
by researchers in recent years as well. Tang and Zhang tackled the EV charging problem via 
a predictive dynamic programming control model [10]. Renewable was installed at each 
charging station, and the power can be traded among the charging stations and microgrids. 
Markov processes were applied to characterize the intermittence of the renewables, the 
volatile charging demand of the EVs, and the real-time variation of the electricity price. 
Wang et al. formulated EV charging problem into two-phase processes [11]. An offline 
power scheduling scheme was initiated first to determine the amount of power supply during 
each hour day ahead. A real-time EV charging algorithm was then executed to derive the 
dynamic EV charging rate. Kang et al. adopted the real-time electricity price, charging 
location, and charging priority as input parameters to an EV battery swapping service. 
Minimization of power loss, charging cost, and peak load demand were achieved in their 
work [12]. Ghasemi et al. integrated EV batteries and battery storage facilities with wind 
farms to smooth the curve of power supply and demand for the electricity market. EV 
charging were performed during off-peak periods in order to cut down the EV charging cost 
[13]. Assuming that a prosumer owns solar and wind power generation, EV, and battery 
storage facility, Lin et al. established a mixed-integer linear programming energy trading 
platform among prosumers to minimize their electricity costs [14]. A hierarchical game 
mechanism was adopted by Tan and Wang to navigate EVs to suitable charging stations 
under the scenario of the transportation and power network [15]. Their simulation results 
showed that the Nash equilibrium was found to increase the revenues of charging stations 
and enhance the stability of power market. 

From the recent literature cited above, it can be seen that the researchers seldom jointly 
considered load profile, renewable generation, EV charging, battery storage facility of an 
individual prosumer, and cooperative operations of microgrids together into the design of the 
day-ahead power scheduling for the IoE framework. Meanwhile, to the best of our 
knowledge, little research work integrates charging demand of moving EVs with the 
day-ahead power scheduling of the future IoE. Thus, a day-ahead power scheduling 
mechanism is proposed in this work to address the technical management issues raised by 
the extensive deployment of intermittent renewables, advanced metering infrastructure, and 
charging need of moving EVs. Regional energy routers are deployed at each microgrid to 
collect and analyze the day-ahead data of power supply and demand for each household 
hourly. Then, power scheduling is initiated to fully utilize the renewable power generations, 
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reduce the electricity bills of prosumers and mitigate carbon emission caused by the 
traditional power generation. Notably, flexible charging service is proposed here to assist 
moving EVs in selecting suitable charging options in order to satisfy the charging demand 
for the EV owners with various preferences and balance the charging loading for all charging 
points. Furthermore, flexible charging service is integrated with the power scheduling to 
alleviate the peak electricity load for the whole IoE service territory. The rest of this article is 
organized as follows. In Section 2, we present the day-ahead power scheduling algorithm. The 
simulation results are provided and analyzed in Sections 3. Finally, the conclusion is given in 
Section 4. 

2. Architecture of the day-ahead power scheduling system for the IoE 
The service territory of the IoE in this work is composed of multiple geographical areas, and 
the microgrids located within each geographical area is managed by the same regional 
energy router. A hierarchical framework is constructed and greater numbers of hierarchical 
levels are required for broad geographical areas or highly populated metropolitan cities. The 
residences/buildings within the service territory of each microgrid can be equipped with 
solar or wind power generation systems and battery storage facilities, and the surplus solar or 
wind power can be stored in the battery storage facility at each residence/building. Once the 
battery storage facility is fully charged, the surplus power can be traded and be kept at the 
battery storage facility owned by the microgrid upstream. The microgrid can utilize the 
stored power to satisfy the electricity load demand of public utilities within the territory 
managed by the microgrid. Notably, via the information exchange among regional energy 
routers, the surplus power can also be traded to the moving EVs that are expected to reach 
the microgrid that generates power or the prosumers/microgrids that lack of power during 
peak load periods.  

Along with surging growth of EV market in recent years, the provision of charging 
facilities turns out to be one major concern for potential EV buyers, besides the purchase 
price of the EV. In the literature, most research work has been devoted to charge/discharge 
management of parked EVs [16]. Recently, several researchers investigated charging 
problems for moving EVs. Apart from the conventional plug-in charging station, different 
charging options, such as EV battery switching [17] and on-road wireless charging [18]-[20], 
were presented to provide more selections for EV charging methods. However, the 
integration of the EV user’s charging preference with the route planning should be 
considered to fit each individual EV user’s need. 
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As shown on the bottom right of Fig. 1, each EV is set up to run its trip planning and 
charging checking module. In order to update the location of the EV in real-time, the EV 
estimates the battery status of the EV on the way to the destination during each fixed 
short-time interval. Since the development of on-board vehicle route planning systems is 
already mature [21][22], this work applies any available trip planning software package on 
the market to estimate the time required to reach the destination. The proposed trip planning 
and charging checking module then checks the battery status of the moving EV. In case 
electricity shortage occurs midway in the trip, this module will locate the most suitable 
charging point on the way to the destination that fits the EV user’s preference.  

Electric vehicle

Upper-level macro-regional energy router

Trip planning and 
charging checking

Power scheduling

Microgrid
Electricity 

supply/demand 
database

Bottom-level regional energy router

Main grid

Power scheduling

Power scheduling

...(2) (7)

...(3) (6)

...(4) (5) ...(1)

...

 
Fig. 1. Architecture the proposed power scheduling algorithm 

There are four options of charging point selection for the EV user, including slow 
charging station, fast charging stations, battery switching station, and on-road wireless 
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charging. For example, if the EV user wishes to reach the destination as soon as possible, the 
trip planning and charging module will determine the charging option for a moving EV that 
takes the shortest time to reach and wait at the charging point. On the contrary, the EV user 
is suggested to select the charging point with the lowest charging cost if no specific charging 
preference is designated. In this work, all charging options on the way to the destination is 
divided into two groups, one supporting fast charging or on-road wireless charging, and the 
other offering low-cost/slow charging service. That is, the charging points offering 
low-cost/slow charging services are placed into the candidate list if the major concern of the 
EV owner is the charging price, whereas other charging options that provide fast charging or 
on-road wireless charging will be recorded in the cache if the EV owner expects to recharge 
the battery as fast as possible. 

After the EV updates all candidate charging points that suit the preference of the EV in 
the cache, fuzzy logic technique is applied to determine the most suitable charging option 
from all candidate charging points. the fuzzy inference system is employed in this work 
owning to its effectiveness in the power management for EVs in the recent literature [23][24]. 
After the charging option for the EV is determined, the EV then notifies the regional energy 
router(s) at which the charging point(s) are located, and provide the regional router all 
charging related information, including the arrival time at the designated charging point(s), 
desired minimal state of charge (SoC) of the EV battery, the day-ahead hourly SoC for the 
EV battery, and. 

As illustrated in Fig. 1, the operator of the IoE initiates the power scheduling algorithm 
at the main grid and forwards the power scheduling requests to the regional energy routers at 
all levels downstream. Accordingly, the power trading among the microgrids can be carried 
out by the bottom-level regional energy routers. Notably, if a microgrid is notified by a 
moving EV that it needs to charge its battery at a specific charging point located within the 
service territory of the microgrid, the estimated arrival time of the EV, the battery status after 
the EV arrives at the microgrid, and the expected amount of charged electricity will be 
recorded at the cache of the bottom-level regional energy router upstream for future 
scheduling reference.  

After scheduling, status reports of hourly power supply and demand is collected by the 
regional energy router at each level and the overall aggregate power status data is sent to the 
main grid for review of the updated status of day-ahead power operation. Notably, the 
computational complexity is considerably reduced in the presented hierarchical framework 
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when compared with the traditional centralized control mechanism. The detailed description 
of each module as depicted in Fig. 1 is given below. 

2.1. scheduling for regional energy router at upper level 

Step 1: The regional energy router at the current upper level requests the regional energy 
router(s) downstream to schedule the hourly usage of electricity and coordinate the 
power trading with other regional energy routers at the same level, if necessary. As 
mentioned above, the renewables are deployed at the prosumer level, and the battery 
storage facilities can be installed by the prosumers or microgrids in this work. As a 
result, the regional routers at all levels deal with information exchange and power 
trading, whereas the actual power generation and consumption occurs at the 
microgrid and prosumer levels. 

Step 2: If the main grid level is not reached yet, go to Step 3. Otherwise, this work makes an 
effort to minimize the dependency on the traditional power generation at the main 
grid to reduce carbon emission: 

Min�𝑇𝑇𝑇𝑇𝑡𝑡

24

𝑡𝑡=1

 
(1a) 

Min���𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
24

𝑡𝑡=1𝑗𝑗

 
(1b) 

subject to 

𝑇𝑇𝑇𝑇𝑡𝑡 + ��𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
𝑗𝑗

≥ 0 (1c) 

��𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
24

𝑡𝑡=1

= �𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡

24

𝑡𝑡=1

 
(1d) 

where 𝑇𝑇𝑇𝑇𝑡𝑡 represents the required traditional power generation at time t. Notably, 
𝑇𝑇𝑇𝑇𝑡𝑡 is larger than or equal to zero. 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 denotes the status report of hourly 

power supply and demand submitted by the jth regional energy router downstream, 
and 𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡  stands for the power traded by the jth regional energy router 

downstream at time t. Notably, the term �𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡� represents the 

up-to-date hourly power supply and demand status of the jth regional energy router 
downstream at time t after this step is executed. Step 4 is executed next from here. 
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Step 3: The current regional energy router transforms the flattening of the hourly load profile 
and the power supply and demand curve within its service territory into the 
following optimization problem: 

Max��𝑅𝑅𝑆𝑆𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗

24

𝑡𝑡=1𝑖𝑖

 
(2a) 

Min���𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
24

𝑡𝑡=1𝑗𝑗

 
(2b) 

subject to: 

��𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
24

𝑡𝑡=1

= �𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡

24

𝑡𝑡=1

 
(2c) 

𝑅𝑅𝑆𝑆𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = �
1 𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 ≥ 0
0 𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 < 0 

(2d) 

Step 4: If the main grid level is not reached, submit the status report of hourly power supply 
and demand to the regional energy router upstream as follows, 

𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝐷𝐷𝐷𝐷𝑢𝑢,𝑡𝑡 = ��𝐶𝐶𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡�
𝑗𝑗

 (3) 

Otherwise, the status reports of hourly power supply and demand of the whole IoE 

service territory are kept at the cache of the main grid, and the hourly traditional 
power generations 𝑇𝑇𝑇𝑇𝑡𝑡 is adjusted accordingly. 

 

2.2. Power scheduling for the regional energy router at the bottom level 

Step 1: Request the microgrids downstream to predict hourly electricity load, renewable 
power generation, and the SoCs of EV batteries and battery storage facilities. 

Step 2: Collect the status of hourly power supply and demand reported by the ith microgrid 
downstream and calculate the difference between hourly power supply and the 
non-schedulable demand within the service territory of the regional energy router as 
follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 −���𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑁𝑁𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑟𝑟,𝑡𝑡 + �(1 − ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡)⋅𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑠𝑠,𝑡𝑡
𝑠𝑠𝑟𝑟

�
𝑚𝑚

−�𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑃𝑃𝑃𝑃𝐷𝐷𝑙𝑙,𝑡𝑡
𝑙𝑙

 
 

(4) 

Description of parameters: 
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(i) 𝑅𝑅𝑅𝑅𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 represents the total power supply provided by the ith microgrid at time t, 
whereas  𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑃𝑃𝑃𝑃𝐷𝐷𝑙𝑙,𝑡𝑡 denotes the lth power load of the public service required at 
the ith microgrid, whereas 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑠𝑠,𝑡𝑡 and 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑁𝑁𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑟𝑟,𝑡𝑡, stand for the sth 

schedulable and the rth non-schedulable electricity load of the mth prosumer, 
respectively. 

(ii) In this work, the prosumers who keep good historical record in adherence to the former 
scheduling operations of the IoE can be offered with certain electricity purchase price 
discount from power trading market in case the prosumers face power shortage during 
peak load periods. Based on the historical record, each prosumer is judged whether 
she/he is qualified to get involved in the appliance scheduling operation. If a system 
variable ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡 is set to one, the schedulable load of the mth prosumer is allowed to 
participate in the hourly scheduling operation. ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡 can be expressed by: 

ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡 = �
1 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚  ≥ 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚

𝑡𝑡ℎ

0 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚 < 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚
𝑡𝑡ℎ  

(5) 

where 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚
𝑡𝑡ℎ  stands for the threshold of whether the mth prosumer will take 

part in the hourly scheduling operation. 𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚 is derived by: 

𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚=

⎩
⎪
⎨

⎪
⎧�(𝑤𝑤 − 1)𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚 + ε𝑀𝑀𝐷𝐷𝑖𝑖�

𝑤𝑤
if  the mth prosumer took part in the latest sc  

�(𝑤𝑤 − 1)𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚 − ε𝑀𝑀𝐷𝐷𝑖𝑖�
𝑤𝑤

Otherwise
 

(6) 

where ε𝑀𝑀𝐷𝐷𝑖𝑖  and w represent certain fixed constants predetermined by the 

system operator.  

Step 3: There are three optimization objectives at this step, including flattening of the peak 
load periods, prevention of the hourly power shortage within the service territory of 
the current regional energy router, and the reduction of the electricity purchase cost 
for the prosumers who endure power shortage. The formulation of the 
three-objective optimization problem can be expressed by: 

Max��𝑆𝑆𝑇𝑇𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡

24

𝑡𝑡=1𝑖𝑖

                                                                                                                        (7a) 
 

Min���𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡
𝑖𝑖

�                                                                                                                   
24

𝑡𝑡=1

(7b) 
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Min� �𝑐𝑐𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 ∙
𝑖𝑖

24

𝑡𝑡=1
��� ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡 ∙ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑠𝑠,𝑡𝑡

𝑠𝑠𝑚𝑚

+ �χ𝑀𝑀𝐷𝐷𝑖𝑖,𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡 ∙ 𝑆𝑆𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑐𝑐ℎ

𝑗𝑗

+ �𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑐𝑐ℎ

𝑘𝑘

� 

(7c) 

 

 

 
subject to: 

𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 + ��𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ − 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑐𝑐ℎ �
𝑘𝑘

−�𝑆𝑆𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑐𝑐ℎ

𝑗𝑗

−�� ς𝑀𝑀𝐷𝐷𝑖𝑖,𝑈𝑈𝑚𝑚,𝑡𝑡 ∙ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑠𝑠ℎ𝑡𝑡𝑈𝑈𝑚𝑚,𝑠𝑠,𝑡𝑡
𝑠𝑠𝑚𝑚

 

(7d) 

𝑆𝑆𝑇𝑇𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 = �
1 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 ≥ 0
0 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡  < 0 

(7e) 

0 ≤ 𝑆𝑆𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑐𝑐ℎ ≤ 𝛿𝛿𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡

𝑐𝑐ℎ ∙ 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 (7f) 

𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡−1 + 𝑆𝑆𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑐𝑐ℎ ∙ 𝜂𝜂𝐸𝐸𝐸𝐸𝑗𝑗

𝑐𝑐ℎ  (7g) 

𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 (7h) 

𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,0 = 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑖𝑖𝑚𝑚𝑖𝑖  (7i) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡−1 + �𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑐𝑐ℎ ∙ 𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑐𝑐ℎ − 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ /𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑑𝑑𝑐𝑐ℎ � (7j) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  (7k) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,0 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑖𝑖𝑚𝑚𝑖𝑖  (7l) 

0 ≤ 𝜂𝜂𝐸𝐸𝐸𝐸𝑗𝑗
𝑐𝑐ℎ , 𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑐𝑐ℎ ,𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑑𝑑𝑐𝑐ℎ ≤ 1 (7m) 

0 ≤ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ ≤ β𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 ∙ 𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑑𝑑𝑐𝑐ℎ ∙ 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚  (7n) 

β𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡= �
1 if 𝑐𝑐𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 ∙ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑑𝑑𝑐𝑐ℎ ≥𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ

0 otherwise
 

(7o) 

𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑐𝑐ℎ + 𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑑𝑑𝑐𝑐ℎ = 1, 𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ ∈ {0,1},𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑐𝑐ℎ ∈ {0,1} (7p) 

0 ≤ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑐𝑐ℎ ≤ γ𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 ∙ 𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑐𝑐ℎ ∙ 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚  (7q) 

γ𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡= �
1 if 𝑐𝑐𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 ∙ 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑐𝑐ℎ ≥𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ

0 otherwise
 

(7r) 

𝑐𝑐𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 = �
𝑏𝑏𝑏𝑏𝑀𝑀𝐷𝐷𝑖𝑖  if time t is during off peak hours

ρ𝑀𝑀𝐷𝐷𝑖𝑖⋅𝑏𝑏𝑏𝑏𝑀𝑀𝐷𝐷𝑖𝑖 otherwise , ρ𝑀𝑀𝐷𝐷𝑖𝑖 > 1 
(7s) 

χ𝑀𝑀𝐷𝐷𝑖𝑖,𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡= �
1 if the jth EV arrives at the ith microgrid at time t
0 otherwise

 (7t) 

Description of parameters: 

(i) 𝑆𝑆𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑐𝑐ℎ  denotes the electricity that the jth EV gets charged at some specific 

charging point within the service territory of the regional router at time t. 
𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑐𝑐ℎ  and 𝑆𝑆𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑑𝑑𝑐𝑐ℎ  represent the hourly charging and discharging 
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electricity of the kth battery storage facility deployed at the ith microgrid, 
respectively. 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡 denote the hourly SoC of the jth EV battery, whereas 
𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗

𝑖𝑖𝑚𝑚𝑖𝑖 , 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚  stand for the initial, maximal and minimal 
electricity stored at the jth EV battery, respectively. 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 denote the 
hourly SoC for the kth battery storage facility, whereas 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑖𝑖𝑚𝑚𝑖𝑖 , 
𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑚𝑚𝑖𝑖𝑚𝑚  stand for the initial, maximal and minimal 

electricity stored at the kth battery storage facility, respectively. Notably, this 
work assumes that the jth EV computes 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚 within a short time interval 
before the initiation of power scheduling of the main grid, and the governing 
bottom-level regional grid will be notified if the EV needs to get charged at any 
charging point within the service area of a microgrid at time t.  

(ii) χ𝑀𝑀𝐷𝐷𝑖𝑖,𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡 is set to one if the jth EV enters the geographical area of the ith 
microgrid. Otherwise, it is set to zero. The flags β𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡, and γ𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡 
stands for the thresholds of whether the electricity trading through the 
discharging/charging of the kth battery storage facility is larger than the 
degradation cost of the battery. These two flags are set to ones if the electricity 
trading is larger than the degradation cost.  

(iii) 𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ  and 𝑆𝑆𝐶𝐶𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑑𝑑𝑐𝑐ℎ  represent the battery degradation cost owing to 
charging/discharging operation [25]. Binary values of 𝛿𝛿𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡

𝑐𝑐ℎ  indicates whether 
the jth EV is under charging operation mode, whereas 𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡

𝑐𝑐ℎ  and 
𝛿𝛿𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘,𝑡𝑡
𝑑𝑑𝑐𝑐ℎ  indicate whether the kth battery storage facility is charging or 

discharging, respectively. 𝜂𝜂𝐸𝐸𝐸𝐸𝑗𝑗
𝑐𝑐ℎ  stands for charging efficiency for the jth EV 

battery, whereas 𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘
𝑐𝑐ℎ  and 𝜂𝜂𝑀𝑀𝐷𝐷𝑖𝑖,𝑀𝑀𝑃𝑃𝑘𝑘

𝑑𝑑𝑐𝑐ℎ  denotes charging and discharging 
efficiency for the kth battery storage facility, respectively. 

(iv) 𝑐𝑐𝑀𝑀𝐷𝐷𝑖𝑖,𝑡𝑡 stands for the Time-of-Use (ToU) [26] electricity cost charged for the 
prosumers at the ith microgrid in real time. 𝑏𝑏𝑏𝑏𝑀𝑀𝐷𝐷𝑖𝑖 and ρ𝑀𝑀𝐷𝐷𝑖𝑖 stand for the 
off-peak electricity price and the weighting factor of the peak-hour electricity 
purchase cost of the prosumers at the ith microgrid, respectively. These two 
values are updated daily based on the average hourly electricity demand in the 
past records of the ith microgrid. 

Step 4: Submit the status report of hourly power supply and demand to the regional energy 
router upstream. 

2.3. Trip planning and charging checking for the EV 

Step 1: This work assumes that each EV installs some commercial route planning software 
package such as the one developed in [21]. The EV computes the travelling time to 
reach the destination via the route planning software.  

Step 2: This work assumes that the average power consumption of the jth EV battery per 
kilometer is saved at the cache of the jth EV. The jth EV checks its battery status to 
determine whether its battery runs out of power before reaching the destination. The 
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demanded minimal charging power of its battery before arriving at the destination 
can be derived by: 

𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡= �𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗

𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑐𝑐𝑐𝑐𝑟𝑟 + 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑗𝑗

𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡 if 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑐𝑐𝑐𝑐𝑟𝑟 − 𝐴𝐴𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗 ∙ 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑗𝑗

𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡 < 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚

0 otherwise
        

(8) 

where 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 denotes the minimal electricity threshold that must be preserved at 

the battery of the jth EV and 𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗
𝑐𝑐𝑐𝑐𝑟𝑟 stands for the current SoC of its battery. 

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝑗𝑗
𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡 represents the traveling distance between the current position of the EV 

and the destination, and 𝐴𝐴𝐶𝐶𝐸𝐸𝐸𝐸𝑗𝑗  expresses the average EV battery power 

consumption per kilometer.  

Step 3: If the computation at the preceding step indicates no power shortage will occur 
before the jth EV reaches the destination, exit this module.  

Step 4: The EV goes through each charging point on the way to the destination, and add all 
candidate charging points that suits the preference of the EV in the cache. The 
charging points offering low-cost/slow charging service are placed into the candidate 
list if the major concern of the EV owner is the charging price. On the contrary, the 
charging options that provide fast charging or on-road wireless charging will be 
recorded at the cache if the EV owner expects the time to reach the destination as 
short as possible.  

Step 5: The EV computes the estimated arrival time at each charging point on the candidate 
list, and sends a message that includes the estimated arrival time and demanded 
minimal charging power of the battery to each candidate charging point. Notably, 
this work assumes the candidate charging points will reply to the querying EV with 
the hourly charging price and the estimated turnaround time during the arrival of the 
EV. The definition of turnaround time here is the summation of the waiting and 
service time for recharging, and all charging services are operated on a 
first-come-first-served basis. 

Step 6: After the EV receives the response from all candidate charging points, a fuzzy 
charging point selection mechanism is applied to determine the best charging choice 
that fits the preference of each individual EV user from the candidates. As shown in 
Fig. 2, there are three input parameters to the fuzzy charging point selection 
mechanism. They are the hourly electricity cost charged by the charging point, extra 
travelling distance demanded to get to the charging point, and the turnaround time 
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needed for completing charging service at the charging point. As for the output of the 
fuzzy charging point selection mechanism, it represents a fitness measure of the 
charging point that serves the EV. 

Appropriateness 
Level

Fuzzy charging 
point selection 

Charging price

Extra driving distance

Turnaround time

 
Fig. 2. Illustration of fuzzy charging point selection mechanism. 

A set of 27 If-Then rules constructs the fuzzy rule base for the charging point 
selection procedure. The fuzzy inference engine based on Madamni-type model is 
applied in this work. An example of the fuzzy If-Then rule is shown in Fig. 3. The 
three antecedents and the consequent for each rule correspond to the four 
membership functions from left to right in the figure. Three linguistic terms, “low”, 
“medium” and “high” are used in the membership function for the first antecedent, 
and three linguistic terms, “short”, “medium” and “long” are adopted for the second 
and third antecedent membership functions, respectively. The fuzzy linguistic 
variables for the consequent of the inference engine, which is the appropriateness 
level of the candidate charging point, are “low”, “medium” and “high”. The example 
rule given in Fig. 3 can be described as: 

IF the hourly electricity cost charged by the charging point is “medium”, AND the 
extra travelling distance to the charging point is “short”, AND the turnaround time 
needed for completing charging service is “medium” 

THEN the fitness measure of the charging point that suits the need of the EV is 
“medium”. 

 
Fig. 3. An example of Mamdani fuzzy inference engine 

Charging price Extra driving distance Turnaround time Appropriateness level

medium short medium
Rule r Min

wr

medium



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 10, October 2019            5001 

Based on the Mamdani-type mode, the crisp output of the fuzzy inference engine is 
expressed as the weighted average of consequents of all fuzzy If-Then rules: 

( )
( )∫

∫=
l A

l A

dll

ldll
AL

µ

µ
,                                                  (9) 

where ( )lAµ  represents the accumulated area of all “AND” antecedents. 

Step 7: The EV submits the charging request to the charging point derived at the preceding 
step and the bottom-level regional energy router that governs the charging point. 

3. Experimental Results and Analysis 
To order to demonstrate the effectiveness of the presented power scheduling operation, the 
proposed work was implemented in python programming language on a personal computer 
with 3.2GHz CPU and 8GB RAM. Two versions of the power scheduling algorithms are 
compared; one is the scheduling operation with flexible charging, and the other is without 
flexible charging. The data of electricity load, renewable generation, charging/discharging of 
EVs and battery storage facilities originated from [27],[28],[29] and [26], respectively. The 
power service territory of the IoE is separated into three geographical regions that mimicked 
three types of population distribution in the real world. The first region is an urban city with 
18000 residences/buildings, and only one-tenth of them deploy renewables and battery 
storage facilities. This reflects the characteristics of low power supply-demand ratio as seen 
in a metropolitan city with high population density. 2600 residences/buildings are distributed 
within the geographical scope of the second region, and up to nine-tenth of the 
residences/buildings deploy renewables and battery storage facilities. This reflect the fact of 
widespread installation of renewables and battery storage facilities at most of the residences 
in rural areas. As for the third region, there are 2400 residences scattered in this area, and the 
counts of renewables and battery storage facilities are 2280. Such phenomenon with high 
ratio of renewable and battery storage facility deployment can be found in less cultivated or 
wilderness area. The numbers of private EVs, commercial EVs, and EVs for public transport 
are 20000, 6000, and 500, respectively [30]. As mentioned earlier, four options were offered 
to EV owners based on their preset preferences. The four options include slow charging 
station such as parking lot or workplace, fast charging station, battery swapping station, and 
on-road wireless charging service. The numbers of charging points that correspond with 
these four kinds of charging technologies are 4, 4, 2, and 2, respectively. An EV battery can 
be fully charged in thirty minutes for the fast charging option, whereas it may take one to six 
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hours to charge an EV battery if the slow charging service is chosen [31]. The parameters of 
EVs and battery storage facilities used in our simulations are enumerated in Tables 1 and 2, 
respectively. 

Table 1. Parameters of EV batteries 

Brand BYD Nissan 

Rated capacity (kWh) 57 24 

Power (kWh) 9.5 4.0 

Minimum SoC (%) 15 15 

Maximum SoC (%) 95 95 

Charging/Discharging efficiency (%) 97 97 

Power consumption of the power batteries 

(kWh/100km) 
21.5 14.9 

Battery consumption cost (cent/kWh) 4.0 4.0 

Table 2. Parameters of battery storage facilities 

Type of rechargeable battery Lead-acid  Nickel metal hydride  

Rated capacity (kWh) 28.3 36 

Power (kWh) 5.66 7.2 

Cycle life (cycles) 1000 1500 

Battery operation cost (€) 2716.8 4032 

Minimum SoC (%) 10 10 

Maximum SoC (%) 90 90 

Initial SoC (%) 10 10 

Rated depth-of-discharge (%) 80 70 

Charging/Discharging efficiency (%) 91.4 92.5 

Fig.s 4 to 6 present the comparisons of the day-ahead power load demand, solar power, 
and wind power generation before scheduling for Regions 1 to 3, respectively. Notably, the 
EV charging load is not included in the electricity load here. As Region 1 is a highly 
populated metropolitan area, it can be observed from Fig. 4 that the power shortage problem 
becomes serious during peak load periods. This phenomenon can be interpreted by the much 
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fewer renewable power systems compared with dense population in this metropolitan region. 
Contrarily to the results shown in Fig. 4, the solar power generated during the day time in 
Region 2 and the wind power systems deployed in Region 3 as shown in Figs. 5 and 6 
contribute significant portion of the aggregated power supply within a day in these two 
regions. As a result, the supplied electricity may exceed the load demand of sparse 
population distribution in these two regions and the extra electricity can be stored at EV 
batteries and the battery storage facilities of the prosumers and microgrids, or even traded to 
others facing power shortage via the coordination of regional energy routers at all levels. 

 
Fig. 4. Comparison of electricity load, solar power, and wind generation for Region 1 before power 

scheduling 

 
Fig. 5. Comparison of electricity load, solar power, and wind generation for Region 2 before power 

scheduling 
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Fig. 6. Comparison of electricity load, solar power, and wind generation for Region 3 before power 

scheduling 

Fig. 7 aggregates the electricity load, solar power generation, and wind power 
generation for the three regions before scheduling. Since the electricity demand in the 
metropolitan city is much larger than that needed in the rural and wilderness areas, it can be 
inferred from Fig. 7 that the power shortage occurs at the peak load periods in Region 1 
results in the significant disparity between the electricity load and renewable generation for 
the global IoE scope during peak periods.  

 
Fig. 7. Comparison of electricity load, solar power, and wind generation for the globe IoE scope 

before power scheduling 

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pow
er(kW

) 

Electricity load

Time(hr)  

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pow
er(kW

) 

Electricity load

Time(hr)  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 10, October 2019            5005 

 
The effect of flexible EV charging is illustrated in Fig. 8. The comparison target is the 

conventional shortest path first method. The net load in this figure is defined as the 
difference of the aggregated hourly electricity load and the accumulated hourly solar and 
wind power generation for the global IoE scope. In other words, the net load can be viewed 
as the subtraction of hourly renewable power generation from the corresponding electricity 
load as shown in Fig. 7. Consequently, positive hourly net load indicates that power 
scheduling or more traditional power generation is required to balance the load demand 
during peak load periods. It can be revealed that private EVs profoundly participate in power 
scheduling operation and are arranged to refill the electricity for the EV battery during 
off-peak periods because the private EVs are typically parked at home or the workplace most 
of the time. On the contrary, EVs for public transportation with fixed routes have restricted 
flexibility for power scheduling and charging options because they are scheduled to convey 
people or goods during fixed time periods of a day. As for the commercial EVs and electric 
taxis, they are able to shift their charging load to different charging options based on the EV 
owners’ preferences without unbalancing the charging load of charging points. Furthermore, 
flexible charging approach computes the electricity demand for a moving EV required to 
reach the destination and restricts the EVs from charging too much power during peak load 
periods. The electricity load curve is thus smoothed and substantial portions of EV charging 
are shifted to off-peak periods.  

 
Fig. 8. Illustration of net load, EV charging load with flexible charging and shortest route approaches 
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Fig. 9 shows the average time overhead required for EV battery charging with shortest 
route charging and flexible charging approaches. Here the time overhead is defined as the 
extra traveling time to the charging point plus the turnaround time spent at the charging point. 
As shown in Fig. 9, the flexible charging approach results in less time overhead for battery 
charging because the fuzzy charging point selection mechanism installed at each moving EV 
is informed of the congestion information at different charging points, and reduces 
turnaround time by selecting a less crowded charging point for the EV. Meanwhile, the 
proposed approach further cuts down the charging time of EVs and mitigates the peak load 
by controlling the amount of charging power of EVs and navigating EVs to charge the 
electricity during off-peak time intervals while the moving EVs park after reaching their 
destinations. 

 
Fig. 9. Comparison of average time overhead for EVs consumed for recharging with flexible charging 

and shortest route approaches 

 

The average time overhead for the EV groups of time-saving and cost-saving 
preferences is further compared in Fig. 10. A significant gap between the EVs of two groups 
is observed. The flexible charging approach not only balances the charging load of different 
charging options, but also greatly shortens the time overhead required for the EVs that 
request for fast charging. In addition, the flexible charging approach saves the charging cost 
for both EV groups at the charging points and alleviates the peak load of charging points and 
electricity demand by postponing portion of power recharging after a moving EV arrives at 
its destination. 
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Fig. 10. Comparison of average time overhead for EV groups of time-saving and cost-saving 

preference 

Fig. 11 illustrates the traditional power generation with flexible charging and shortest 
route approaches. It can be observed from the blue and red curves in this figure that the 
required traditional power generation is considerably declined after running the proposed 
power scheduling algorithm, and the flexible charging approach flattens the traditional power 
generation profile further. Meanwhile, portion of the surplus electricity acquired from the 
intermittent solar and wind electricity generation at Regions 2 and 3 are not effectively 
utilized because that the battery storage facilities and EV batteries within these two regions 
were fully charged and no available electricity sharing tool can be used to trade the surplus 
electricity gained from solar and wind power generation in the existing electricity 
management system. According to our simulation results, up to 115337 kW or 18.95% of the 
solar and wind renewable power generation are not utilized before running proposed 
scheduling algorithm. Contrariwise, via the trading mechanism of IoE energy router, the 
battery storage facilities and EV batteries at neighboring regions, such as a metropolitan area 
like Region 1 here, can be utilized to keep surplus electricity generated by the solar and wind 
power systems within the geographical territories of the rural or wilderness areas such 
Regions 2 and 3 in this simulation. As a result, the proposed energy router mechanism not 
only effectively flattens the curve of the electricity load for the global IoE scope, but also 
reinforces the stability of the global IoE operation. 
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Fig. 11. Illustration of traditional power generation with flexible charging and shortest route 

mechanism 

4. Conclusion 
Recently, researches suggested to adopt the IoE framework to take the place of the 
architecture of the traditional power market. However, the uncertainty of EV movement and 
renewable generation, as well as the power sharing among microgrids becomes the key 
issues to be addressed by the operators of the power management systems for the future IoE. 
This work proposed a day-ahead power scheduling mechanism to address the unresolved 
technical issues mentioned above. After the main grid launches the day-ahead power 
scheduling operation, regional energy routers under a hierarchical organization are utilized to 
coordinate the information and power exchange among the microgrids. Notably, the regional 
energy routers assist in scheduling electricity load of the prosumers and EVs and allocating 
the surplus electricity gathered by the renewable power generation at some 
prosumers/microgrids to others that lack of power supply during peak load periods. The 
simulation results demonstrate that the proposed algorithm not only fully utilize the 
generated renewables to flatten the curve the load demand of the whole power market of IoE, 
but also ease the carbon emission problem resulting from the power generation of the 
traditional power plants. In addition, via the flexible charging service provided in this work, 
each moving EV is able to select the most suitable charging option that fits the need of each 
EV user. As a result, the charging demand for the EV users with different preferences can be 
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satisfied and the congestion of charging points during peak periods were alleviated. 
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