• 제목/요약/키워드: scattering distance

Search Result 175, Processing Time 0.028 seconds

Observation of Back Scattering and Exposure-Factors (후방산란(後方散亂)과 노출배수(露出倍數)에 관(關)한 검토(檢討))

  • Huh, Joon;Kim, Chang-Kyun;Kang, Hong-Seok;Lee, Sun-Sook;Lee, Jwa-Ryong;Youn, Chul-Ho
    • Journal of radiological science and technology
    • /
    • v.5 no.1
    • /
    • pp.15-19
    • /
    • 1982
  • Authors made an experiment to know the relation of surface doses and multiple factors of exposure by using grids, fields, tube voltages objects and distances and obtained the results as follows: 1. Surface doses were increased in proportion to the thickness of objects. 2. Surface doses were more influenced when irradiated fields were small and tube voltages were low. 3. Surface doses were a logarthmic proportion to the focus-object distance. 4. Multiple factors of exposure by using grid were under the control of the thickness of objects, irradiated fields and tube voltages but the relation of them were not fixed.

  • PDF

Analysis of Various Window Effect for SAR image Recovery (SAR image 복구를 위한 Window 적용 효과 연구)

  • Kim, Hyunguk;Koh, Jinhwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.46-54
    • /
    • 2015
  • SAR is a Radar to obtain the video information using a radio wave. Platform emit the radio wave, depending backscattered waves returned from the target object the signal to the distance, to create a topographical map is recorded in two-dimensional image. In this paper, through a simulation to apply a variety of window in the SAR image processing for SAR image recovery is to study the application effect of the window, as a result, at the side of the signal of the SNR, Flattop window to improve the best performance it was confirmed to show.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Parametric study on the heat transfer in a radiating medium (주요매개변수에 따른 복사매질 내에서의 열전달 특성에 관한 연구)

  • Lee, Chan;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1381-1389
    • /
    • 1988
  • The heat transfer by simultaneous conduction, convection and radiation between flame and fuel surface in a thermally radiating medium is investigated theoretically. The flame and fuel surface are assumed to be diffuse, gray, infinite, isothermal, parallel surfaces separated by a finite distance. The space between the plates is supposed is formulated exactly in terms of simultaneous interior-differential equations. The numerical results reveal the effect of the system parameters on the heat transfer characteristics and the temperature distributions. The numerical results reveal that the optically thick radiating medium has a blocking effect on the total beat transfer. The temperature distributions are observed to be convex upward for an optically thick radiating medium as the alberto decreases.

Numerical Study on the Wireless Communication at 550[nm], 850[nm] and 1550[nm] Wavelength LD in Fog and Pointing Error using Cassegrain Optics (카세그레인 광학계를 사용한 광무선통신 시스템에서 550[nm], 850[nm] 및 1550[nm]의 광 파장에 대한 안개 및 포인팅의 에러의 영향에 대한 해석)

  • Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.164-175
    • /
    • 2008
  • Atmospheric effects on laser beam propagation can be broken down into two categories: attenuation of the laser power and fluctuation of laser power due to laser beam deformation. Attenuation consists of scattering of the laser light photons by the fog. Laser beam deformation occurs because of small-scale dynamic changes in the index of refraction of the atmosphere. This causes pointing error. In order to analyse these effect on optical wireless communication system, in this paper uses cassegrain optics as a transmitting and receiving telescope, AID as a detecting device and ill as a light source. The signal modulating and demodulating method is a IM/DD. I show the effects of fog and pointing error and calculate the possible communication distance for BER is $10^{-9}$.

Structural and Electrical Properties of RaRuO$_3$ Thin Film for Electrode of Ferroelectric Capacitors (강유전체 캐패시터 전극으로의 BaRuO$_3$박막의 구조적 및 전기적 특성)

  • 박봉태;구상모;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • Highly conductive oxide films of BaRuO$_3$ have been grown heteroepitaxially on (100) LaAlO$_3$ single crystalline substrates by using pulsed laser deposition. The films are c-axis oriented with an in-plane epitaxial relationship of <010><100>BaRuO$_3$ // <110>LaAlO$_3$. Atomic force microscopy (AFM) observation shows that they consist of a fine-arranged network of grains and have a mosaic microstructure. Generally temperature-dependent resistivity shows the transition from metallic curve to semiconductor-metallic twofold curve by the deposition conditions for Ru oxide based materials like SrRuO$_3$, CaRuO$_3$, BaRuO$_3$, etc.. This twofold curve comes from the structural similarity of Ru oxide based materials including BaRuO$_3$. We find that the distance of Ru-Ru bonding in the unit cell of BaRuO$_3$ as well as the grain boundary scattering could be the two important causes of these interesting conductive properties.

  • PDF

Development of an energy and efficiency calibration method for stilbene scintillators

  • Kim, Chanho;Kim, Jaehyo;Hong, Wooseong;Yeom, Jung-Yeol;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3833-3840
    • /
    • 2022
  • A method for calibrating the energy scale and detection efficiency of stilbene scintillators is presented herein. This method can be used to quantitatively analyze the Compton continuum of gamma-ray spectra obtained using such scintillators. First, channel-energy calibration was conducted by fitting a semi-empirical equation for the Compton continuum to the acquired energy spectrum and a new method to evaluate the intrinsic detection efficiency, called intrinsic Compton efficiency, of stilbene scintillators was proposed. The validity of this method was verified by changing experimental conditions such as the number of sources being measured simultaneously and the detector-source distance. According to the energy calibration, the standard error for the estimated Compton edge position was ±1.56 keV. The comparison of the intrinsic Compton efficiencies calculated from the single- and two-source spectra showed that the mean absolute difference and the mean absolute percentage difference are 0.031 %p and 0.557%, respectively, demonstrating reasonable accuracy of this method. The feasibility of the method was confirmed for an energy range of 0.5-1.5 MeV, showing that stilbene scintillators can be used to quantitatively analyze gamma rays in mixed-radiation fields.

Development of On-axis Raman Lidar System for Remotely Measuring Hydrogen Gas at Long Distance (원거리 수소 가스 원격 계측을 위한 On-axis 라만 라이다 장치 개발)

  • Choi, In Young;Baik, Sung Hoon;Lim, Jae Young;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Hydrogen gas is an important and promising energy resource that has no emissions of pollutants during power generation. However, hydrogen gas is very dangerous because it is colorless, odorless, highly flammable, and explosive at low concentration. Conventional techniques for hydrogen gas detection are very difficult for measuring the hydrogen gas distribution at long distances, because they sample the gas to measure its concentration. Raman lidar is one of the techniques for remotely detecting hydrogen gas and measuring the range of the hydrogen gas distribution. A Raman lidar system with an on-axis optical receiver was developed to improve the range of hydrogen gas detection at long distance. To verify the accuracy and improvement in the range of detecting the hydrogen gas, experiments measuring the hydrogen gas concentration are carried out using the developed on-axis Raman lidar system and a gas chamber, to prevent explosion of the hydrogen gas. As a result, our developed on-axis Raman lidar system can measure a minimum hydrogen gas concentration of 0.66 volume percent at a distance of 50 m.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Analysis of Target Identification Performances Using Bistatic ISAR Images (바이스태틱 ISAR 영상을 이용한 표적식별 성능 분석)

  • Lee, Seung-Jae;Lee, Seong-Hyeon;Kang, Min-Seok;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.566-576
    • /
    • 2016
  • Inverse synthetic aperture radar(ISAR) image generated from bistatic radar(Bi-ISAR) represents two-dimensional scattering distribution of a target, and the Bi-ISAR can be used for bistatic target identification. However, Bi-ISAR has large variability in scattering mechanisms depending on bistatic configurations and do not represent exact range-Doppler information of a target due to inherent distortion. Thus, an efficient training DB construction is the most important factor in target identification using Bi-ISARs. Recently, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic target identification, was applied to target identification using high resolution range profiles(HRRPs) generated from bistatic radar(Bi-HRRPs), to construct efficient training DB under bistatic configurations. Consequently, high identification performance was achieved using only small amount of training Bi-HRRPs, when the target is a considerable distance away from the bistatic radar. Thus, flight scenarios based training DB construction is applied to target identification using Bi-ISARs. Then, the capability and efficiency of the method is analyzed.