• Title/Summary/Keyword: scattered dose

Search Result 169, Processing Time 0.022 seconds

Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 선형가속기 구성요소 변화에 따른 후방산란에 관한 연구)

  • Kim, Hwein;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • It should be accurate dose calculation to increase the efficiency of radiation therapy, and it is priority to figure out the beam characteristics for this purpose. The target and primary collimator in head components of the linear accelerator have the greatest influence on determining the beam characteristics which is caused by backscatter and it is the factor to consider the shielding structures and equipment management. In this study, we made modeling of the linear accelerator through the Geant4 Monte Carlo simulation and investigated backscatter according to the change of the size and shape in head components. For the scattered electrons, it showed the greatest number of distributions inside of the inner radius at primary collimator. But, for the scattered photons which have the high energy, it was mostly located outside of the inner radius at primary collimator. Scattered positrons showed a small occurrence in about 0.03%. According to the change of the inner radius at primary collimator, it was great changes in the inside of inner radius for all three scattered particles. According to the change of the outer radius at primary collimator, it was shown some considerable effects from more than 60 mm outer radius. It was no significant effect according to the change of target thickness. In this study, we found that backscatter should be considered, and figured out that geometric size and shape of the peripheral components are the factors that influences the backscatter effect.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.

Neutron Calibration Field of a Bare 252Cf Source in Vietnam

  • Le, Thiem Ngoc;Tran, Hoai-Nam;Nguyen, Khai Tuan;Trinh, Giap Van
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents the establishment and characterization of a neutron calibration field using a bare $^{252}Cf$ source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

Ultrastructural study of mouse ovary under X-ray irradiation (방사선 조사선량에 따른 생쥐 난소의 미세구조적 연구)

  • Yoon, Chul-Ho
    • Journal of radiological science and technology
    • /
    • v.28 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • This study investigated the structural changes of folliculus ovarii according to the dose of the X-rays when mice were exposed to X-rays from 6MeV LINAC. The minute structural changes of folliculus ovarii were observed through an electron microscope with high magnification. Nuclei and protoplasm of granular cells in growing folliculus ovarii abruptly underwent minute structural changes according to the increase of dose of X-rays. Cell residue, by-product of cell decease, neutrophil and macrophage around follicular antrum were observed. The minute structural changes in granular cells showed typical characteristics of apoptosis: the increase of electronic density due to nuclear condensation, fragmentation of nuclei, and atrophy of protoplasm. Necrosis of cells was identified, but it was not so remarkable. Macrophage scattered with apoptotic bodies.

  • PDF

Bolus Effect to Reduce Skin Dose of the Contralateral Breast During Breast Cancer Radiation Therapy (유방암 방사선치료 시 반대편 유방의 피부선량 감소를 위한 볼루스 효과)

  • Won, Young Jin;Kim, Jong Won;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.289-295
    • /
    • 2017
  • The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge $15^{\circ}$ were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

Dose Distribution of Wedge filter by Dose Rate in LINAC (선형가속기의 선량율에 따른 쐐기필터의 선량분포)

  • Gwon, Taehyeong;Kim, Seunguk;Yoon, Yonghak;Won, Doyeon;Jeong, Kyeonghwan;Jung, Jaeeun;Cho, Juneho
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.323-329
    • /
    • 2015
  • This study is aimed at assessing whether dynamic wedge filters are appropriate to be used instead of physical wedge filters. The X-ray energy generated from linear accelerator is commercialize 6 MV and 10 MV. $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$ of physical wedge filter was irradiated by dose rate 100, 200, 300, 400, 500, and 600 MU/min for each angle and for comparison with a dynamic wedge filter, irradiate 96 times under the same conditions. The measurement conditions are as 100 cm source-film distance and $10{\times}10cm$ irradiated surface. A developed film was scanned and analyzed after a calibration through a dose analysis program and the dose rate was compared after calculating the standard deviation. Dynamic wedge filters make dose, scattered rays and treatment time reduced and very useful due to less irradiated doses to patients. The errors at each dose rate under the same conditions were irrelevant. Thus, treatment based on a high dose rate depending on the patient is expected to be feasible.

Reducing Radiation Exposure Dose on Operator by Using Lateral Protection in Neuro-Intervention (뇌혈관 중재적시술에 있어 측방향 차폐체를 이용한 시술자 피폭 선량 저감화 방법 연구)

  • Kim, Jongdeok;Ahn, ByeoungJu;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The bi-plane cerebrovascular angiography radiation is done the radiation exposure at the forward and lateral direction as opposed to the one of the source. So, the exposure dose of radiation workers increases further. Therefore, the medical diagnostic radiation workers as well as patients is interested to ways to reduce the dose. The exposure dose of cerebral angiography and interventional radiology must be considered the primary radiation of X-ray tube directly, scattered primary radiation between lateral tube and lateral detector and relatively small secondary scatter radiation in the walls of room. The aim of study is that the exposure dose of primary and scatter radiation reduce as much as possible to install protection device of lateral protection than common shielding of table and ceiling. As a result, the dose of fluoroscopy was reduced approximately 3.64 times the gonads, thyroid approximately 3.13 times, 4.42 times around eyes. And the dose of DSA was reduced approximately 4.98 times the gonads, thyroid approximately 3.00 times, 1.67 times around eyes. Consequently, medical practitioners can be helpful for radiation dose-exposure for the lateral protection of bi-plane cerebrovascular angiography more than the common shield method in cerebrovascular angiography and interventional radiological procedures.

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형 쐐기(Physical wedge)와 동적 쐐기(Dynamic wedge)의 조사야 주변 선량에 관한 연구)

  • Ko, Shin-Gwan;Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 2008
  • Measurements of the peripheral dose were performed using a 2D array ion chamber and solid water phantom for a $10{\times}10cm$, source-surface distance (SSD) 90cm, 6 and 15MV photon beam at depths of 0.5cm, 5cm through $d_{max}$. Measurements of peripheral dose at 0.5cm and 5cm depths were performed from 1cm to 5cm outside of fields for the dynamic wedge and physical wedge $15^{\circ}$, $45^{\circ}$. For 6MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1% than that of physical wedge For 15MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6% that of physical wedge. The results showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge. The wedge systems produce different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

An Assessment of the Radiation Dose from Radiography with the Change in Air Gap (공극(기극(氣隙)) 변화에 따른 방사선촬영 선량평가)

  • Ahn, Byeong Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.381-385
    • /
    • 2016
  • This study aims to propose a method for reducing radiation dose in high-voltage radiography using air gap technique while maintaining the same image quality as when using grids. For an experiment, air gaps were set at 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm with a focus-receptor distance of 180 cm; with each air gap distance, tube current was set at 15 mAs, and tube voltage was set at 80 kVp, 85 kVp, 90 kVp, 95 kVp and 100 kVp. Then, radiographs were taken. In a situation of employing a conventional method of using grids, radiographs were taken at 15 mAs and 107 kVp with a focus-receptor distance of 180 cm. According to the results of the experiment, the surface radiation dose from radiography using grids was 0.130 R; the surface radiation dose at a 20cm air gap was 0.124 R; PSNR between these two images was 10.65 [dB]. In conclusion, the air gap distance, which could maintain the image quality similar to that of a case where scattered radiation was removed and grids were used with a small surface radiation dose, was 20 cm. The result of this study is thought to be used as an indicator to remove surface radiation dose in radiography using air gap.

A Change in an Absorbed Dose of the Heart in General and Respiratory Control Radiation Treatment Plans (일반 및 호흡조절 방사선치료계획에서 심장의 흡수선량 변화)

  • Yang, Eun-Ju;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2018
  • In radiation treatment, it is unavoidable to block the influence of scattered ray on a skin and prevent internal normal organs from being exposed to radiation. It is fair to say that radiation therapy aims to reduce an absorbed dose of normal tissues. In particular, in radiation therapy of left-sided breast cancer, the internal neighboring organs are normal breast tissues, the heart, and the lung. The side effects on the heart include cardioplegy and myocardial infarction. This study tried to observe changes in the volume and dose of the heart in general radiation therapy plan and respiratory control based radiation therapy plan for patients with left-sided breast cancer, and to find the heart's volume and dose generated by respiration. According to the 4D computer tomography (CT), a volume of the heart had $12.8{\pm}8.7cc$ on average, and its dose had $17.3{\pm}12.1cGy$ on average. The differences in the volume and dose may cause side effects in radiation treatment. Therefore, it is necessary to apply respiratory control technique to establish the radiation treatment plan based on an accurate position of the heart.